I nt ernet Engi neering Task Force (I ETF) S. Cheshire

Request for Comments: 6763 M Krochnal
Cat egory: Standards Track Appl e Inc.
| SSN: 2070-1721 February 2013

DNS- Based Service Discovery

Abstract

Thi s docunent specifies how DNS resource records are naned and
structured to facilitate service discovery. Gven a type of service
that a client is looking for, and a domain in which the client is

| ooking for that service, this nechanismallows clients to discover
a list of naned instances of that desired service, using standard
DNS queries. This nmechanismis referred to as DNS-based Service

Di scovery, or DNS-SD

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc6763

Copyright Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the
document authors. All rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wthout warranty as
described in the Sinplified BSD License.

Cheshire & Krochnal St andards Track [Page 1]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Tabl e

PP

10.
11.

12.

13.

14.
15.
16.
17.
18.

of Contents
Introducti On 3
Conventions and Term nol ogy Used in This Document 5
Design Goal S 5
Service Instance Enuneration (Browsing) 6
4.1. Structured Service Instance NamesS 6
4.2. User Interface Presentation 9
4.3. Internal Handling of Names 9
Service Instance Resolution 10
Data Syntax for DNS-SD TXT Records, 11
6.1. Ceneral Format Rules for DNS TXT Records 11
6.2. DNS-SD TXT Record Sizet 12
6.3. DNS TXT Record Format Rules for Use in DNS-SD 13
6.4. Rules for Keys in DNS-SD Key/Value Pairs 14
6.5. Rules for Values in DNS-SD Key/Value Pairs 16
6.6. Exanple TXT Record i 17
6. 7. Version Taguuiii e e 17
6.8. Service Instances with Multiple TXT Records 18
ServiCe NaMBS ... 19
7.1. Selective Instance Enuneration (Subtypes) 21
7.2. Service Name Length Limts 23
Flagship Naming e e 25
Service Type Enumerati on 27
Populating the DNS with Information 27
Di scovery of Browsing and Regi strati on Domai ns (Domnain
Enumerati on) 28
DNS Additional Record Generationo, 30
12.1. PTR Records e 30
12.2. SRV ReECOIrdS ... it 30
12.3. TXT RECOrdS ..o 31
12. 4. O her RecOrd TYPES .. i i e e e 31
VWOrking Exanmpl es 31
13.1. What web pages are being advertised fromdns-sd.org? 31
13.2. What printer-configuration web pages are there? 31
13.3. How do | access the web page called "Service
Dl SCOVEI Y 2 i e 32
IPv6 Considerati ONS i e e 32
Security Considerati Ons 32
IANA Considerati ONS 32
AcCknow edgment S 33
Ref erenCes 33
18.1. Normative References i 33
18.2. Informative References i, 34

Appendi x A. Rationale for Using DNS as a Basis for Service

DI SCOVEI Y .ot 37

Cheshire & Krochmal St andards Track [Page 2]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Appendi x B. Ordering of Service Instance Nane Conponents 38

B.1. Semantic StruCture 38

B.2. Network Efficiency 39

B.3. OQperational Flexibility 39
Appendi x C. What You See Is What You Get 40
Appendi x D. Choice of Factory-Default Nanes 42
Appendi x E. Nane Encodings in the Donmain Nanme System.............. 44
Appendi x F. "Continuous Live Update" Browsing Mddel 45
Appendi x G Deployment Hi Story 47

1. Introduction

Thi s docunent specifies how DNS resource records are naned and
structured to facilitate service discovery. Gven a type of service
that a client is looking for, and a domain in which the client is

| ooking for that service, this nechanismallows clients to discover a
list of naned instances of that desired service, using standard DNS
queries. This nmechanismis referred to as DNS-based Service

Di scovery, or DNS-SD

Thi s docunent proposes no change to the structure of DNS nessages,
and no new operation codes, response codes, resource record types, or
any ot her new DNS protocol val ues

This docunent specifies that a particular service instance can be
descri bed using a DNS SRV [RFC2782] and DNS TXT [RFC1035] record.

The SRV record has a nanme of the form "<Instance>. <Servi ce>. <Domai n>"
and gives the target host and port where the service instance can be
reached. The DNS TXT record of the sane nanme gives additiona

i nformati on about this instance, in a structured form using key/val ue
pairs, described in Section 6. A client discovers the |ist of
avai l abl e i nstances of a given service type using a query for a DNS
PTR [RFC1035] record with a nanme of the form "<Service>. <Domai n>"
which returns a set of zero or nore nanes, which are the nanmes of the
af orementi oned DNS SRV/ TXT record pairs.

This specification is conpatible with both Miulticast DNS [RFC6762]
and with today’s existing Unicast DNS server and client software.

When used with Miulticast DNS, DNS-SD can provide zero-configuration
operation -- just connect a DNS-SD/nDNS device, and its services are
advertised on the local link with no further user interaction [Z(C].

Wien used with conventional Unicast DNS, sone configuration will

usual ly be required -- such as configuring the device with the DNS
domain(s) in which it should advertise its services, and configuring
it with the DNS Update [RFC2136] [RFC3007] keys to give it perm ssion
to do so. In rare cases, such as a secure corporate network behind a

Cheshire & Krochmal St andards Track [Page 3]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

firewall where no DNS Update keys are required, zero-configuration
operation may be achieved by sinply having the device register its
services in a default registration domain |earned fromthe network
(see Section 11, "Discovery of Browsing and Regi stration Donmai ns"),
but this is the exception and usually security credentials will be
required to perform DNS updat es.

Not e that when using DNS-SD with Uni cast DNS, the Unicast DNS-SD
service does NOT have to be provided by the sane DNS server hardware
that is currently providing an organi zation’s conventional host nane
| ookup service. \While many people think of "DNS' exclusively in the
context of mapping host nanes to I P addresses, in fact, "the DNS is a
general (if sonewhat limted) hierarchical database, and can store

al nost any kind of data, for al nbst any purpose" [RFC2181]. By

del egating the " _tcp" and "_udp" subdonmains, all the workload rel ated
to DNS-SD can be offloaded to a different nachine. This flexibility,
to handl e DNS-SD on the main DNS server or not, at the network

adm nistrator’s discretion, is one of the benefits of using DNS

Even when the DNS-SD functions are delegated to a different nachine,
the benefits of using DNS remain: it is mature technol ogy, well

understood, with multiple independent inplenmentations fromdifferent
vendors, a wi de selection of books published on the subject, and an

est abl i shed workforce experienced in its operation. |In contrast,
adopti ng sone other service discovery technol ogy would require every
site inthe world to install, learn, configure, operate, and maintain

sonme entirely new and unfaniliar server software. Faced with these
obstacles, it seens unlikely that any other service discovery
technol ogy coul d hope to conpete with the ubiquitous depl oynent that
DNS al ready enjoys. For further discussion, see Appendix A,
"Rationale for Using DNS as a Basis for Service Discovery".

This docunent is witten for two audi ences: for devel opers creating
application software that offers or accesses services on the network
and for developers creating DNS-SD libraries to inplenment the
advertising and discovery nechani sns. For both audi ences,

under standi ng the entire docunent is hel pful. For devel opers
creating application software, this document provides gui dance on
choosi ng i nstance nanes, service nanes, and other aspects that play a
role in creating a good overall user experience. However, also
under st andi ng the underlyi ng DNS nechani sns used to provide the
service discovery facilities hel ps application devel opers understand
the capabilities and limtations of those underlying nechani sns
(e.g., name length linmts). For library devel opers witing software
to construct the DNS records (to advertise a service) and generate
the DNS queries (to discover and use a service), understanding the
ultimate user-experience goals hel ps them provide APIs that can neet
t hose goal s.

Cheshire & Krochmal St andards Track [Page 4]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

2.

Conventions and Term nol ogy Used in This Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in "Key words for use in
RFCs to I ndicate Requirenent Levels" [RFC2119].

Desi gn CGoal s

O the many properties a good service discovery protocol needs to
have, three of particul ar inportance are:

(i) The ability to query for services of a certain type in a
certain |ogical domain, and receive in response a |list of naned
i nstances (network browsing or "Service |nstance Enuneration").

(ii) Gven a particular named instance, the ability to efficiently
resol ve that instance nane to the required information a client
needs to actually use the service, i.e., |P address and port
nunber, at the very |east (Service |Instance Resol ution).

(iii) Instance nanmes should be relatively persistent. |If a user
selects their default printer froma list of avail able choices
today, then tonorrow they should still be able to print on that
printer -- even if the |IP address and/or port number where the
servi ce resides have changed -- w thout the user (or their
software) having to repeat the step (i) (the initial network
browsi ng) a second tine.

In addition, if it is to becone successful, a service discovery
protocol should be so sinple to inplenent that virtually any device
capabl e of inplementing | P should not have any trouble inplenmenting
the service discovery software as well

These goals are discussed in nore detail in the remainder of this
docunent. A nore thorough treatnent of service discovery
requirenents may be found in "Requirenents for a Protocol to Replace
t he Appl eTal k Nane Bi nding Protocol (NBP)" [RFC6760]. That docunent
draws upon exanples fromtwo decades of operational experience with
Appl eTal k to develop a list of universal requirenents that are
broadly applicable to any potential service discovery protocol

Cheshire & Krochmal St andards Track [Page 5]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

4.

4.

Service | nstance Enuneration (Browsing)

Tradi tional DNS SRV records [RFC2782] are useful for |ocating

i nstances of a particular type of service when all the instances are
ef fectively indistinguishable and provide the sane service to the
client.

For exanple, SRV records with the (hypothetical) nane

" http. _tcp.example.com"” would allow a client to discover servers

i npl ementing the " _http. _tcp" service (i.e., web servers) for the
"exanpl e.com” domain. The unstated assunption is that all these
servers offer an identical set of web pages, and it doesn't matter to
the client which of the servers it uses, as long as it selects one at
random according to the weight and priority rules laid out in the DNS
SRV specification [RFC2782].

I nstances of other kinds of service are | ess easily interchangeabl e.
If a word processing application were to | ook up the (hypothetical)
SRV record " _ipp._tcp.exanple.com"” to find the list of Internet
Printing Protocol (IPP) [RFC2910] printers at Exanple Co., then

pi cki ng one at random and printing on it would probably not be what
t he user want ed.

The renai nder of this section describes how SRV records nay be used
inaslightly different way, to allow a user to discover the nanmes of
all available instances of a given type of service, and then select,
fromthat list, the particular instance they desire.

1. Structured Service |Instance Nanes

Thi s docunent borrows the |ogical service-nam ng syntax and senmantics
from DNS SRV records, but adds one level of indirection. |Instead of
requesting records of type "SRV' wi th nanme "_ipp._tcp.exanple.com",
the client requests records of type "PTR' (pointer fromone nane to
anot her in the DNS nanespace) [RFC1035].

In effect, if one thinks of the donmain name " _ipp._tcp.exanple.com"”
as bei ng anal ogous to an absolute path to a directory in a file
system then DNS-SD s PTR | ookup is akin to performing a listing of
that directory to find all the entries it contains. (Renenber that
domai n nanes are expressed in reverse order conpared to path nanes --
an absolute path nane starts with the root on the left and is read
fromleft to right, whereas a fully qualified domain nane starts with
the root on the right and is read fromright to left. |If the fully
qualified domain nane " _ipp._tcp.exanple.com" were expressed as a
file systempath nane, it would be "/com exanple/ _tcp/ _ipp".)

Cheshire & Krochmal St andards Track [Page 6]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

The result of this PTR | ookup for the nane "<Service>. <Domai n>" is a
set of zero or nore PTR records giving Service Instance Nanes of the
form

Servi ce Instance Nane = <lnstance> . <Service> . <Donmai n>

For expl anation of why the conponents are in this order, see Appendi X
B, "Ordering of Service Instance Nanme Conponents"

4,1.1. I nst ance Nanes

The <l nstance> portion of the Service Instance Nane is a user-
friendly nane consisting of arbitrary Net-Unicode text [RFC5198]. It
MUST NOT contain ASCI|I control characters (byte val ues 0x00-Ox1F and
Ox7F) [RFC20] but otherwise is allowed to contain any characters

wi thout restriction, including spaces, uppercase, |owercase,
punctuation -- including dots -- accented characters, non-Roman text,
and anything el se that may be represented usi ng Net-Unicode. For

di scussi on of why the <lnstance> nane should be a user-visible, user-
friendly nane rather than an invisible machi ne-generated opaque
identifier, see Appendix C, "Wat You See |Is Wiat You Get".

The <l nstance> portion of the nane of a service being offered on the
net wor k SHOULD be configurable by the user setting up the service, so
that he or she may give it an informative nane. However, the device
or service SHOULD NOT require the user to configure a nane before it
can be used. A sensible choice of default name can in many cases
all ow the device or service to be accessed wi thout any manua
configuration at all. The default nanme should be short and
descriptive, and SHOULD NOT i nclude the device's Media Access Contro
(MAC) address, serial nunber, or any simlar inconprehensible
hexadeci mal string in an attenpt to make the nane globally unique.
For discussion of why <Instance> nanes don’t need to be (and SHOULD
NOT be) nade unique at the factory, see Appendi x D, "Choice of

Fact ory-Default Nanmes".

This <lnstance> portion of the Service Instance Nane is stored
directly in the DNS as a single DNS | abel of canonical preconposed
UTF-8 [RFC3629] "Net - Uni code" (Unicode Nornalization Form C)

[RFC5198] text. For further discussion of text encodings, see
Appendi x E, "Nanme Encodings in the Domain Name Systent.

DNS | abels are currently limted to 63 octets in length. UTF-8
encodi ng can require up to four octets per Unicode character, which
nmeans that in the worst case, the <lInstance> portion of a name could
be limted to fifteen Unicode characters. However, the Uni code

Cheshire & Krochmal St andards Track [Page 7]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

characters with longer octet |engths under UTF-8 encoding tend to be
the nore rarely used ones, and tend to be the ones that convey
greater meani ng per character.

Note that any character in the commonly used 16-bit Uni code Basic

Mul tilingual Plane [Unicode6] can be encoded with no nore than three
octets of UTF-8 encoding. This neans that an instance nanme can
contain up to 21 Kanji characters, which is a sufficiently expressive
name for nost purposes.

4.1.2. Service Nanes

The <Service> portion of the Service Instance Nane consists of a pair
of DNS | abels, follow ng the convention already established for SRV
records [RFC2782]. The first |abel of the pair is an underscore
character followed by the Service Name [RFC6335]. The Service Name
identifies what the service does and what application protocol it
uses to do it. The second label is either " _tcp" (for application
protocols that run over TCP) or " _udp" (for all others). For nore
details, see Section 7, "Service Names".

4.1. 3. Domai n Nanes

The <Donmi n> portion of the Service |Instance Nane specifies the DNS
subdonmai n wit hin which those nanmes are registered. It nmay be
"local.", meaning "link-local Milticast DNS' [RFC6762], or it nay be
a conventional Unicast DNS domai n nanme, such as "ietf.org."
"cs.stanford.edu.", or "eng.us.ibmcom" Because Service |Instance
Nanmes are not host nanes, they are not constrained by the usual rules
for host nanes [RFCL033] [RFC1034] [RFC1035], and rich-text service
subdonai ns are all owed and encouraged, for exanpl e:

Building 2, 1st Floor . exanmple . com
Building 2, 2nd Floor . exanple . com
Building 2, 3rd Floor . exanple . com
Building 2, 4th Floor . exanple . com

In addition, because Service Instance Names are not constrai ned by
the linmtations of host names, this docunent recommends that they be
stored in the DNS, and conmuni cated over the wire, encoded as

strai ghtforward canoni cal preconmposed UTF-8 [RFC3629] " Net - Uni code”
(Uni code Normalization Form C) [RFC5198] text. |n cases where the
DNS server returns a negative response for the name in question
client software MAY choose to retry the query using the "Punycode"

al gorithm [RFC3492] to convert the UTF-8 nane to an | DNA "A-1abel "

[RFC5890], beginning with the top-Ilevel l|abel, then issuing the query

Cheshire & Krochmal St andards Track [Page 8]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

repeatedly, with successively nore labels translated to | DNA A-| abel s
each time, and giving up if it has converted all |abels to | DNA
A-l1abels and the query still fails.

4. 2. User Interface Presentation

The nanes resulting fromthe Service Instance Enunerati on PTR | ookup
are presented to the user in alist for the user to select one (or
more). Typically, only the first |abel is shown (the user-friendly
<Instance> portion of the nane).

In the common case the <Service> and <Donmi n> are al ready known to
the client software, these having been provided inplicitly by the
user in the first place, by the act of indicating the service being
sought, and the domain in which to look for it. Note that the

sof tware handling the response should be careful not to nake invalid
assunptions though, since it *is* possible, though rare, for a
service enuneration in one domain to return the nanes of services in
a different domain. Simlarly, when using subtypes (see Section 7.1,
"Sel ective Instance Enuneration") the <Service> of the discovered

i nstance may not be exactly the sane as the <Service> that was
request ed.

For further discussion of Service Instance Enuneration (browsing)
user-interface considerations, see Appendix F, "’ Continuous Live
Updat e’ Browsi ng Model "

Once the user has selected the desired naned instance, the Service
I nstance Nanme may then be used i medi ately, or saved away in sone
persi stent user-preference data structure for future use, depending
on what is appropriate for the application in question

4.3. Internal Handling of Nanes

If client software takes the <lnstance>, <Service> and <Domai n>
portions of a Service Instance Nane and internally concatenates them
together into a single string, then because the <lnstance> portion is
all owed to contain any characters, including dots, appropriate
precauti ons MJST be taken to ensure that DNS | abel boundaries are
properly preserved. Cient software can do this in a variety of
ways, such as character escaping.

This docunment RECOMMENDS that if concatenating the three portions of
a Service Instance Name, any dots in the <Instance> portion be
escaped follow ng the customary DNS convention for text files: by
preceding literal dots with a backslash (so "." becones "\.").

Li kewi se, any backsl ashes in the <lnstance> portion should also be
escaped by preceding themw th a backslash (so "\" becones "\\").

Cheshire & Krochmal St andards Track [Page 9]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Havi ng done this, the three conponents of the nane may be safely
concatenated. The backsl ash-escaping allows literal dots in the name
(escaped) to be distinguished fromlabel -separator dots (not

escaped), and the resulting concatenated string nay be safely passed
to standard DNS APIs |ike res_query(), which will interpret the
backsl ash-escaped string as intended.

5. Service |Instance Resol ution

When a client needs to contact a particular service, identified by a
Service Instance Nane, previously discovered via Service |nstance
Enuneration (browsing), it queries for the SRV and TXT records of
that nane. The SRV record for a service gives the port nunber and
target host nane where the service may be found. The TXT record

gi ves additional information about the service, as described in
Section 6, "Data Syntax for DNS-SD TXT Records"

SRV records are extrenely useful because they renove the need for
preassi gned port nunbers. There are only 65535 TCP port nunbers
avai l abl e. These port nunbers are traditionally allocated one per
application protocol [RFC6335]. Sone protocols |like the X W ndow
System have a bl ock of 64 TCP ports allocated (6000-6063). Using a
different TCP port for each different instance of a given service on
a given nmachine is entirely sensible, but allocating each application
its own large static range, as was done for the X Wndow System is
not a practical way to do that. On any given host, npbst TCP ports
are reserved for services that will never run on that particul ar host
inits lifetime. This is very poor utilization of the linted port
space. Using SRV records allows each host to allocate its avail able
port nunbers dynamically to those services actually running on that
host that need them and then advertise the allocated port nunbers
via SRV records. Allocating the available Iistening port nunmbers
locally on a per-host basis as needed allows rmuch better utilization
of the available port space than today’'s centralized gl oba

al I ocati on.

In the event that nore than one SRV is returned, clients MJST
correctly interpret the priority and weight fields -- i.e., |ower-
nunmbered priority servers should be used in preference to higher-
nunbered priority servers, and servers with equal priority should be
selected randomy in proportion to their relative weights. However,
in the overwhel mi ngly common case, a single advertised DNS-SD service
instance is described by exactly one SRV record, and in this comon
case the priority and weight fields of the SRV record SHOULD both be
set to zero.

Cheshire & Krochmal St andards Track [Page 10]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

6.

6.

Data Syntax for DNS-SD TXT Records

Some services discovered via Service | nstance Enuneration may need
nmore than just an I P address and port nunber to conpletely identify
the service instance. For exanple, printing via the old Unix LPR
(port 515) protocol [RFC1179] often specifies a queue nane [BJP].
This queue nane is typically short and cryptic, and need not be shown
to the user. 1t should be regarded the sane way as the | P address
and port nunmber: it is another conponent of the addressing
information required to identify a specific instance of a service
being of fered by sone piece of hardware. Sinmilarly, a file server
may have multiple volunes, each identified by its own volune nane. A
web server typically has multiple pages, each identified by its own
URL. In these cases, the necessary additional data is stored in a
TXT record with the sane nane as the SRV record. The specific nature
of that additional data, and how it is to be used, is service-
dependent, but the overall syntax of the data in the TXT record is

st andardi zed, as descri bed bel ow

Every DNS-SD service MJST have a TXT record in addition to its SRV
record, with the sane nane, even if the service has no additiona
data to store and the TXT record contains no nore than a single zero
byte. This allows a service to have explicit control over the Tine
to Live (TTL) of its (enpty) TXT record, rather than using the

default negative caching TTL, which would ot herwi se be used for a "no
error no answer" DNS response.

Note that this requirement for a mandatory TXT record applies
exclusively to DNS-SD service advertising, i.e., services advertised
usi ng the PTR+SRV+TXT convention specified in this docunment. It is
not a requirenment of SRV records in general. The DNS SRV record

dat atype [RFC2782] may still be used in other contexts w thout any

requi renent for acconpanying PTR and TXT records.
1. Ceneral Format Rules for DNS TXT Records

A DNS TXT record can be up to 65535 (OxFFFF) bytes long. The total
length is indicated by the length given in the resource record header
in the DNS nessage. There is no way to tell directly fromthe data
alone howlong it is (e.g., there is no length count at the start, or
term nating NULL byte at the end).

Not e that when using Multicast DNS [RFC6762] the nmaxi mum packet size
is 9000 bytes, including the | P header, UDP header, and DNS nessage
header, which inposes an upper linit on the size of TXT records of
about 8900 bytes. |In practice the nmaxi mum sensible size of a DNS-SD
TXT record is snmaller even than this, typically at nost a few hundred
bytes, as described below in Section 6. 2.

Cheshire & Krochmal St andards Track [Page 11]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

The format of the data within a DNS TXT record is one or nore
strings, packed together in nmenory wi thout any intervening gaps or
paddi ng bytes for word alignnent.

The format of each constituent string within the DNS TXT record is a
single length byte, foll owed by 0-255 bytes of text data.

These format rules for TXT records are defined in Section 3.3.14 of
the DNS specification [RFCL035] and are not specific to DNS-SD

DNS- SD specifies additional rules for what data should be stored in
those constituent strings when used for DNS-SD service adverti sing,
i.e., when used to describe services advertised using the PTR+SRV+TXT
convention specified in this docunent.

An enpty TXT record containing zero strings is not allowed [RFC1035].
DNS- SD i npl enent ati ons MJUST NOT emit enpty TXT records. DNS-SD
clients MIST treat the follow ng as equival ent:

0 A TXT record containing a single zero byte.
(i.e., asingle enpty string.)

0 An enpty (zero-length) TXT record
(This is not strictly legal, but should one be received, it should
be interpreted as the sane as a single enpty string.)

o No TXT record.
(i.e., an NXDOVAI N or no-error-no-answer response.)

6. 2. DNS- SD TXT Record Si ze

The total size of a typical DNS-SD TXT record is intended to be small
-- 200 bytes or |ess.

In cases where nore data is justified (e.g., LPR printing [BJP]
keeping the total size under 400 bytes should allowit to fit i
single 512-byte DNS nessage [RFC1035].

)
n a

In extrene cases where even this is not enough, keeping the size of
the TXT record under 1300 bytes should allowit to fit in a single
1500- byt e Et her net packet.

Using TXT records |larger than 1300 bytes is NOI RECOWENDED at this
tinme.

Note that sone Ethernet hardware vendors offer chipsets with

Mul ticast DNS [RFC6762] offl oad, so that conputers can sleep and
still be discoverable on the network. Early versions of such
chi psets were sonetines quite limted: for exanple, sone were

Cheshire & Krochmal St andards Track [Page 12]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

(unwi sely) limted to handling TXT records no |arger than 256 bytes
(which neant that LPR printer services with larger TXT records did
not work). Devel opers should be aware of this real-world limtation
and shoul d understand that even hardware which is otherw se perfectly
capabl e may have | ow power and sl eep nodes that are nore linited

6.3. DNS TXT Record Format Rules for Use in DNS-SD

DNS- SD uses DNS TXT records to store arbitrary key/value pairs
conveyi ng additional information about the named service. Each
key/value pair is encoded as its own constituent string within the
DNS TXT record, in the form"key=val ue" (w thout the quotation
marks). Everything up to the first ’ character is the key (Section
6.4). Everything after the first '=" character to the end of the
string (including subsequent '=" characters, if any) is the val ue
(Section 6.5). No quotation marks are required around the val ue,
even if it contains spaces, '= characters, or other punctuation

mar ks. Each author defining a DNS-SD profile for discovering

i nstances of a particular type of service should define the base set
of key/value attributes that are valid for that type of service

Using this standardi zed key/value syntax within the TXT record nakes
it easier for these base definitions to be expanded | ater by defining
additional naned attributes. |If an inplenentation sees unknown keys
in a service TXT record, it MJST silently ignore them

The target host name and TCP (or UDP) port nunber of the service are
given in the SRV record. This information -- target host name and
port nunber -- MJST NOT be duplicated using key/value attributes in
the TXT record.

The intention of DNS-SD TXT records is to convey a small anount of
useful additional information about a service. ldeally, it should
not be necessary for a client to retrieve this additional information
before it can usefully establish a connection to the service. For a
wel | - desi gned application protocol, even if there is no information
at all in the TXT record, it should be possible, knowi ng only the
host nane, port nunber, and protocol being used, to conmmunicate with
that |istening process and then performversion- or feature-
negotiation to determ ne any further options or capabilities of the
service instance. For exanple, when connecting to an AFP (Apple
Filing Protocol) server [AFP] over TCP, the client enters into a
protocol exchange with the server to deternine which version of AFP
the server inplenments and which optional features or capabilities (if
any) are avail abl e.

For protocols designed with adequate in-band version- and feature-
negotiation, any information in the TXT record should be viewed as a

Cheshire & Krochmal St andards Track [Page 13]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

performance optinization -- when a client discovers nany instances of
a service, the TXT record allows the client to know sone rudi nentary
i nformati on about each instance w thout having to open a TCP
connection to each one and interrogate every service instance
separately. Care should be taken when doing this to ensure that the
information in the TXT record is in agreenent with the information
that would be retrieved by a client connecting over TCP

There are | egacy protocols that provide no feature negotiation
capability, and in these cases it may be useful to convey necessary
information in the TXT record. For exanple, when printing using LPR
[RFC1179], the LPR protocol provides no way for the client to
determi ne whether a particular printer accepts PostScript, what

version of PostScript, etc. In this case it is appropriate to enbed
this information in the TXT record [BJP], because the alternative
woul d be worse -- passing around witten instructions to the users,

arcane manual configuration of "/etc/printcap" files, etc.

The engi neeri ng deci sion about what keys to define for the TXT record
needs to be decided on a case-by-case basis for each service type.

For some service types it is appropriate to comunicate information
via the TXT record as well as (or instead of) via in-band

communi cation in the application protocol

6.4. Rules for Keys in DNS-SD Key/ Val ue Pairs
The key MJST be at |east one character. DNS-SD TXT record strings

beginning with an '=" character (i.e., the key is mssing) MJIST be
silently ignored.

The key SHOULD be no nore than nine characters long. This is because
it is beneficial to keep packet sizes snmall for the sake of network
efficiency. Wen using DNS-SD in conjunction with Milticast DNS

[RFC6762] this is inportant because nulticast traffic is especially
expensi ve on 802. 11 wirel ess networks [I EEEW, but even when using
conventional Unicast DNS, keeping the TXT records snall hel ps inprove
the chance that responses will fit within the original DNS 512-byte
size limt [RFCL035]. Also, each constituent string of a DNS TXT
record is limted to 255 bytes, so excessively |ong keys reduce the
space avail able for that key’'s val ues.

The keys in key/value pairs can be as short as a single character
A key nane needs only to be uni que and unanbi guous w thin the context
of the service type for which it is defined. A key nane is intended
solely to be a machi ne-readable identifier, not a human-readabl e
essay giving detailed discussion of the purpose of a paranmeter, wth
a URL for a web page giving yet nore details of the specification
For ease of devel opnment and debugging, it can be valuable to use key

Cheshire & Krochmal St andards Track [Page 14]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

nanes that are mmenoni ¢ textual names, but excessively verbose keys
are wasteful and inefficient, hence the reconmendation to keep them
to nine characters or fewer.

The characters of a key MJST be printable US-ASCI| val ues (0x20-0x7E)
[RFC20], excluding '= (0x3D)

Spaces in the key are significant, whether leading, trailing, or in
the middle -- so don’t include any spaces unless you really intend
t hat .

Case is ignored when interpreting a key, so "papersize=A4"

" PAPERSI ZE=A4", and "Papersi ze=A4" are all identical

If there is no '=" in a DNS-SD TXT record string, then it is a

bool ean attribute, sinply identified as being present, with no val ue.

A given key SHOULD NOT appear nore than once in a TXT record. The
reason for this sinplifying rule is to facilitate the creation of
client libraries that parse the TXT record into an internal data
structure (such as a hash table or dictionary object that maps from
keys to values) and then nmake that abstraction available to client
code. The rule that a given key may not appear nore than once
sinmplifies these abstractions because they aren’t required to support
the case of returning nore than one value for a given key.

If aclient receives a TXT record containing the same key nore than
once, then the client MIUST silently ignore all but the first
occurrence of that attribute. For client inplenentations that
process a DNS-SD TXT record fromstart to end, placing key/val ue
pairs into a hash table using the key as the hash table key, this
nmeans that if the inplenentation attenpts to add a new key/val ue pair
into the table and finds an entry with the sanme key already present,
then the new entry bei ng added should be silently discarded instead.
Cient inplenentations that retrieve key/value pairs by searching the
TXT record for the requested key should search the TXT record from
the start and sinply return the first matching key they find.

Cheshire & Krochmal St andards Track [Page 15]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

When examining a TXT record for a given key, there are therefore four
categories of results that may be returned:

* Attribute not present (Absent)

* Attribute present, with no val ue
(e.g., "passreq" -- password required for this service)

* Attribute present, with enpty val ue
(e.g., "Pluglns=" -- the server supports plugins, but none are
presently installed)

* Attribute present, with non-enpty val ue
(e.g., "Pluglns=JPEG MPER, MPEA")

Each author defining a DNS-SD profile for discovering instances of a
particul ar type of service should define the interpretation of these
different kinds of result. For exanple, for sone keys, there nay be
a natural true/false boolean interpretation

Absent inplies 'fal se
* Present inplies '"true

For other keys it may be sensible to define other semantics, such as
val ue/ no- val ue/ unknown:

* Present with value inplies that val ue.
(e.g., "Color=4" for a four-color ink-jet printer
or "Color=6" for a six-color ink-jet printer)

* Present with enpty value inplies 'false’
(e.g., not a color printer)

* Absent inplies ’Unknown’ .
(e.g., a print server connected to some unknown printer where the
print server doesn't actually know if the printer does color or
not -- which gives a very bad user experience and shoul d be
avoi ded wherever possible)

Note that this is a hypothetical exanple, not an exanple of actua
key/val ue keys used by DNS-SD network printers, which are docunented
in the "Bonjour Printing Specification" [BJP].

6.5. Rules for Values in DNS-SD Key/Val ue Pairs

If there is an =" in a DNS-SD TXT record string, then everything
after the first "= to the end of the string is the value. The value

can contain any eight-bit values including '=". The val ue MJST NOT

Cheshire & Krochmal St andards Track [Page 16]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

be encl osed in additional quotation narks or any simlar punctuation
any quotation marks, or leading or trailing spaces, are part of the
val ue.

The val ue is opaque binary data. Oten the value for a particul ar
attribute will be US-ASCI| [RFC20] or UTF-8 [RFC3629] text, but it is
| egal for a value to be any binary data.

Ceneri ¢ debuggi ng tools should generally display all attribute val ues
as a hex dunp, with acconpanying text al ongside displaying the UTF-8
interpretation of those bytes, except for attributes where the
debuggi ng tool has enbedded know edge that the value is sone other

ki nd of data.

Aut hors defining DNS-SD profiles SHOULD NOT generically convert
binary attribute data types into printable text using hexadeci nal
representation, Base-64 [RFC4648], or Unix-to-Unix (UU) encoding,
merely for the sake of naking the data appear to be printable text
when seen in a generic debugging tool. Doing this sinply bloats the
size of the TXT record, without actually nmaking the data any nore
under st andabl e to sonmeone | ooking at it in a generic debugging tool

6.6. Exanple TXT Record

The TXT record bel ow contains three syntactically valid key/val ue
strings. (The neaning of these key/value pairs, if any, would depend
on the definitions pertaining to the service in question that is
usi ng them)

| Ox09 | key=value | 0x08 | paper=A4 | 0x07 | passreq

6.7. \Version Tag

It is reconmmended that authors defining DNS-SD profiles include an
attribute of the form"txtvers=x", where "x" is a decinmal version
nunber in US-ASCI|I [RFC20] text (e.g., "txtvers=1" or "txtvers=8"),
in their definition, and require it to be the first key/value pair in
the TXT record. This information in the TXT record can be useful to
hel p clients maintain backwards conpatibility with ol der

i npl enentations if it beconmes necessary to change or update the
specification over tine. Even if the profile author doesn’'t
anticipate the need for any future inconpatible changes, having a
versi on nunber in the TXT record provides useful insurance should

i nconpati bl e changes becone unavoi dabl e [RFC6709]. Cients SHOULD
ignore TXT records with a txtvers nunber higher (or Iower) than the
version(s) they know how to interpret.

Cheshire & Krochmal St andards Track [Page 17]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Note that the version nunber in the txtvers tag describes the version
of the specification governing the defined keys and the neani ng of
those keys for that particular TXT record, not the version of the
application protocol that will be used if the client subsequently
decides to contact that service. ldeally, every DNS-SD TXT record
specification starts at txtvers=1l and stays that way forever

| nprovenents can be made by defining new keys that older clients
silently ignore. The only reason to increnent the version nunber is
if the old specification is subsequently found to be so horribly
broken that there’s no way to do a conpatible forward revision, so
the txtvers nunber has to be increnented to tell all the old clients
they should just not even try to understand this new TXT record.

If there is a need to indicate which version nunber(s) of the
application protocol the service inplenents, the recommended key for
this is "protovers"

6.8. Service Instances with Miltiple TXT Records

Ceneral |y speaking, every DNS-SD service instance has exactly one TXT
record. However, it is possible for a particular protocol’s DNS-SD
advertising specification to state that it allows multiple TXT
records. In this case, each TXT record describes a different variant
of the sane |ogical service, offered using the same underlying
protocol on the sane port, described by the sane SRV record.

Having multiple TXT records to describe a single service instance is
very rare, and to date, of the many hundreds of registered DNS-SD
service types [SN], only one nmakes use of this capability, nanely LPR
printing [BJP]. This capability is used when a printer conceptually
supports nultiple |Iogical queue nanes, where each different |ogica
queue nane i nplenments a different page description | anguage, such as
80- col umm nonospaced plain text, seven-bit Adobe PostScript, eight-
bit ("binary") PostScript, or some proprietary page description

| anguage. Wien nmultiple TXT records are used to describe multiple

| ogi cal LPR queue nanes for the same underlying service, printers

i nclude two additional keys in each TXT record: 'qtotal’, which
specifies the total nunber of TXT records associated with this SRV
record, and ’'priority’, which gives the printer’s relative preference
for this particular TXT record. Cients then select the nost
preferred TXT record that neets the client’s needs [BJP]. The only
reason nultiple TXT records are used is because the LPR protoco

| acks i n-band feature-negotiation capabilities for the client and
server to agree on a data representation for the print job, so this

i nformati on has to be comuni cat ed out-of -band i nstead using the DNS-
SD TXT records. Future protocol designs should not follow this bad
exanpl e by mmcking this inadequacy of the LPR printing protocol

Cheshire & Krochmal St andards Track [Page 18]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

7.

Servi ce Nanes

The <Service> portion of a Service |Instance Nane consists of a pair
of DNS | abels, follow ng the convention al ready established for SRV
records [RFC2782].

The first label of the pair is an underscore character followed by
the Service Nanme [RFC6335]. The Service Nane identifies what the
service does and what application protocol it uses to do it.

For applications using TCP, the second label is "_tcp
For applications using any transport protocol other than TCP, the
second label is " _udp". This applies to all other transport
protocol s, including User Datagram Protocol (UDP), Stream Contro
Transm ssi on Protocol (SCTP) [RFC4960], Datagram Congestion Contro
Prot ocol (DCCP) [RFC4340], Adobe’s Real Tinme Media Fl ow Protocol
(RTMFP), etc. In retrospect, perhaps the SRV specification should
not have used the " tcp" and " _udp" labels at all, and instead should
have used a single label " srv" to carve off a subdonain of DNS
namespace for this use, but that specification is already published
and deployed. At this point there is no benefit in changing

est ablished practice. Wile "_srv" mght be aesthetically nicer than
" udp", it is not a user-visible string, and all that is required
protocol-wise is (i) that it be a |abel that can forma DNS

del egation point, and (ii) that it be short so that it does not take
up too nuch space in the packet, and in this respect either "_udp" or
"_srv" is equally good. Thus, it nmakes sense to use " _tcp" for TCP-
based services and "_udp"” for all other transport protocols -- which
are in fact, in today's world, often encapsul ated over UDP -- rather
than defining a new subdonmain for every new transport protocol

Note that this usage of the "_udp" |abel for all protocols other than

TCP applies exclusively to DNS-SD service advertising, i.e., services
advertised using the PTR+SRV+TXT convention specified in this
docunent. It is not a requirenent of SRV records in general. Oher

specifications that are independent of DNS-SD and not intended to
interoperate with DNS-SD records are not in any way constrained by
how DNS- SD wor ks just because they also use the DNS SRV record

dat atype [RFC2782]; they are free to specify their own nam ng
conventions as appropriate.

The rules for Service Nanes [RFC6335] state that they nmay be no nore
than fifteen characters |long (not counting the nmandatory underscore),
consisting of only letters, digits, and hyphens, nust begin and end
with a letter or digit, must not contain consecutive hyphens, and
must contain at |east one letter. The requirenent to contain at

| east one letter is to disallow Service Nanes such as "80" or

Cheshire & Krochmal St andards Track [Page 19]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

"6000- 6063", which could be nmisinterpreted as port nunmbers or port
nunber ranges. Wile both uppercase and | owercase letters may be
used for menonic clarity, case is ignored for conparison purposes
so the strings "HTTP" and "http" refer to the sane service

Wse selection of a Service Nanme is inportant, and the choice is not
al ways as obvious as it may appear

In many cases, the Service Nanme nerely names and refers to the on-
the-wire nmessage format and semantics being used. FTP is "ftp", |PP
printing is "ipp", and so on

However, it is common to "borrow' an existing protocol and repurpose
it for a newtask. This is entirely sensible and sound engi neeri ng
practice, but that doesn’t nean that the new protocol is providing
the sane senantic service as the old one, even if it borrows the same
message formats. For exanple, the network nusic sharing protoco

i mpl enent ed by i Tunes on Maci ntosh and Wndows is built upon "HTTP
GET" conmands. However, that does *not* mean that it is sensible or
useful to try to access one of these nusic servers by connecting to
it with a standard web browser. Consequently, the DNS-SD service
advertised (and browsed for) by iTunes is "_daap. _tcp" (Digital Audio
Access Protocol), not "_http._tcp".

If i Tunes were to advertise that it offered " _http. _tcp" service,
that woul d cause i Tunes servers to appear in conventional web
browsers (Safari, Cam no, Omi Wb, |Internet Explorer, Firefox,
Chrone, etc.), which is of little use since an i Tunes nusic library
of fers no HTML pages contai ni ng human-readabl e content that a web
browser coul d displ ay.

Equally, if iTunes were to browse for " _http. tcp" service, that
woul d cause it to discover generic web servers, such as the enbedded
web servers in devices like printers, which is of little use since
printers generally don’t have nuch nmusic to offer

Anal ogously, Sun Mcrosystens’s Network File System (NFS) is built on
top of Sun M crosystens’s Renote Procedure Call (Sun RPC) nechani sm
but that doesn’t nmean it nmakes sense for an NFS server to advertise
that it provides "Sun RPC' service. Likew se, Mcrosoft’s Server
Message Bl ock (SMB) file service is built on top of Netbios running
over | P, but that doesn’'t nean it nakes sense for an SMB file server
to advertise that it provides "Netbios-over-IP' service. The DNS-SD
nane of a service needs to encapsul ate both the "what" (semantics)
and the "how' (protocol inplenentation) of the service, since

know edge of both is necessary for a client to use the service

meani ngful ly. Merely advertising that a service was built on top of
Sun RPCis no use if the client has no idea what the service does.

Cheshire & Krochmal St andards Track [Page 20]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Anot her common question is whether the service type advertised by

i Tunes should be " _daap. _http. tcp." This would also be incorrect.
Similarly, a protocol designer inplenmenting a network service that
happens to use the Sinple Object Access Protocol [SQAP] shoul d not
feel conpelled to have "_soap" appear sonewhere in the Service Nane.
Part of the confusion here is that the presence of " _tcp" or " _udp"
in the <Service> portion of a Service Instance Nane has | ed people to
assume that the visible structure of the <Service> should reflect
the private internal structure of how the protocol was inplenmented.
This is not correct. All that is required is that the service be
identified by some uni que opaque Service Nane. Making the Service
Nanme be English text that is at least nmarginally descriptive of what
the service does may be convenient, but it is by no neans essenti al

7.1. Selective Instance Enumeration (Subtypes)

Thi s docunent does not attenpt to define a sophisticated (e.qg.
Turing conplete, or even regul ar expression) query |anguage for
service discovery, nor do we believe one is necessary.

However, there are sone limted circunstances where narrow ng the set
of results may be useful. For exanple, many network printers offer a
web- based user interface, for managenent and admi nistration, using
HTML/ HTTP. A web browser wanting to discover all advertised web
pages issues a query for " _http. _tcp.<Domai n>". On the other hand,
there are cases where users wish to manage printers specifically, not
to di scover web pages in general, and it is good acconmpbdate this.

In this case, we define the "_printer" subtype of " _http._tcp", and
to di scover only the subset of pages advertised as having that
subtype property, the web browser issues a query for

" printer. _sub. _http._tcp. <Domai n>".

The Safari web browser on Mac OS X 10.5 "Leopard" and | ater uses
subtypes in this way. |If an "_http. _tcp" service is discovered both
via "_printer._sub. _http. _tcp" browsing and via "_http._tcp" browsing
then it is displayed in the "Printers" section of Safari’'s U. If a
service is discovered only via " _http. _tcp" browsing then it is

di spl ayed in the "Wbpages" section of Safari’s U . This can be seen
by using the conmands bel ow on Mac OS X to advertise tw "fake"
services. The service instance "A web page" is displayed in the
"Webpages" section of Safari’s Bonjour list, while the instance
"Aprinter’s web page" is displayed in the "Printers" section

dns-sd -R "A web page" _http. _tcp | ocal 100
dns-sd -R "A printer’s web page" _http._tcp,_printer |local 101

Note that the advertised web page’s Service Instance Nane is
unchanged by the use of subtypes -- it is still sonething of the form

Cheshire & Krochmal St andards Track [Page 21]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

"The Server. _http. tcp.exanple.com", and the advertised web page is
still discoverable using a standard browsing query for services of
type "_http. _tcp". The subdomain in which HTTP server SRV records
are registered defines the namespace within which HTTP server nanes
are unique. Additional subtypes (e.g., "_printer") of the basic
service type (e.g., " _http. tcp") serve to allow clients to query for
a narrower set of results, not to create nore nanespace

Using DNS zone file syntax, the service instance "A web page" is
advertised using one PTR record, while the instance "A printer’'s web
page" is advertised using two: the primary service type and the
addi ti onal subtype. Even though the "A printer’'s web page" service
is advertised two different ways, both PTR records refer to the nane
of the same SRV+TXT record pair:

; One PTR record advertises "A web page"
_http. _tcp.local. PTR Al 032web\ 032page. _http. tcp. | ocal

; Two different PTR records advertise "A printer’'s web page"
_http. _tcp.local. PTR A 032printer’s\032web\ 032page. _http._tcp. | ocal
_printer._sub._http._tcp.local

PTR A\ 032pri nter’ s\ 032web\ 032page. _http. tcp. | ocal

Subt ypes are appropriate when it is desirable for different kinds of
client to be able to browse for services at two | evels of

granularity. In the exanple above, we describe two classes of HITP
clients: general web browsing clients that are interested in all web
pages, and specific printer nanagenent tools that would like to

di scover only web U pages advertised by printers. The set of HITP
servers on the network is the same in both cases; the difference is
that some clients want to discover all of them whereas other clients
only want to find the subset of HITP servers whose purpose is printer
admi ni stration.

Subtypes are only appropriate in two-1evel scenarios such as this
one, where sone clients want to find the full set of services of a
given type, and at the sane tine other clients only want to find sone
subset. Generally speaking, if there is no client that wants to find
the entire set, then it’s neither necessary nor desirable to use the
subtype nmechanism If all clients are browsing for sone particul ar
subtype, and no client exists that browses for the parent type, then
a new Service Nane representing the |ogical service should be
defined, and software should sinply advertise and browse for that
particul ar service type directly. |In particular, just because a
particul ar network service happens to be inplenented in terns of sone
ot her underlying protocol, like HTTP, Sun RPC, or SOAP, doesn’t nean
that it's sensible for that service to be defined as a subtype of

" _http", " _sunrpc", or "_soap". That would only be useful if there

Cheshire & Krochmal St andards Track [Page 22]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

were sone class of client for which it is sensible to say, "I want to
di scover a service on the network, and | don't care what it does, as
long as it does it using the SOAP XML RPC nechani sm "

Subt ype strings are not required to begin with an underscore, though
they often do. As with the TXT record key/value pairs, the list of
possi bl e subtypes, if any (including whether some or all begin with
an underscore) are defined and specified separately for each basic
service type

Subtype strings (e.g., "_printer” in the exanple above) may be
constructed using arbitrary 8-bit data values. In nany cases these
data val ues may be UTF-8 [RFC3629] representations of text, or even
(as in the exanple above) plain ASCI1 [RFC20], but they do not have
to be. Note, however, that even when using arbitrary 8-bit data for
subtype strings, DNS name conparisons are still case-insensitive, so
(for example) the byte values 0x41 and O0x61 will be considered

equi val ent for subtype conparison purposes.

7.2. Service Name Length Linmits

As specified above, Service Names are allowed to be no nore than
fifteen characters long. The reason for this limt is to conserve
bytes in the domain nanme for use both by the network adm nistrator
(choosi ng service donmai n nanes) and by the end user (choosing

i nstance nanes).

A fully qualified domain nane may be up to 255 bytes |ong, plus one
byte for the final terminating root |abel at the end. Domain nanes
used by DNS-SD take the follow ng forns:

<sn>. tcp . <servicedonai n> . <parentdonai n>.
<Instance> . <sn>._tcp . <servicedomai n> . <parentdomai n>.
<sub>. _sub . <sn>. _tcp . <servicedonmai n> . <parentdomai n>.

The first exanple shows the nanme used for PTR queries. The second
shows a Service Instance Nane, i.e., the nane of the service's SRV
and TXT records. The third shows a subtype browsing nane, i.e., the
nane of a PTR record pointing to a Service Instance Nane (see Section
7.1, "Selective Instance Enuneration").

The Service Nane <sn> nay be up to 15 bytes, plus the underscore and
| ength byte, nmaking a total of 17. Including the " udp" or " _tcp"
and its length byte, this nakes 22 bytes.

The instance nane <lInstance> may be up to 63 bytes. Including the

| ength byte used by the DNS fornmat when the nane is stored in a
packet, that nakes 64 bytes.

Cheshire & Krochmal St andards Track [Page 23]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

When usi ng subtypes, the subtype identifier is allowed to be up to 63
bytes, plus the length byte, making 64. Including the " sub" and its
I ength byte, this makes 69 bytes.

Typically, DNS-