Framebuffer HOWTO

Alex Buell
<alex.buell@munted.org.uk>

2010-08-05, version 1.3

Revision History

Revision v1.3 2010-08-05
Converted to DocBook from LinuxDoc

Revision v1.2 2000-01-22
Last public release

Revision v1.1 1999-07-22
With some additional information

Revision v1.0 1999-06-07

First public release

This document describes how to use the framebuffer devices in Linux with a variety of platforms. This also
includes how to set up multi-headed displays.

mailto:alex.buell@munted.org.uk

Framebuffer HOWTO

Table of Contents

1. Contributors. 1
2. What is a framebuffer device? 3
3. What advantages does framebuffer devices have? 4
4. Using framebuffer devices on x86 platforms 5
A1 WHRAL TS VESATD D oottt ettt et e e e et e eeeeeeeeeeeeeeeeeeeeeeeeeesesesesesessssssssesssssnsnsnsnnnns 5

4.2. How do T activate the VESAID AITVETS Deueeeeeeeieieiiieieieeeeeeeeeeee ettt e e e e e e e e e ee e e e e asnans 5

4.3. What VESA modes are available 0 INE2......uuuuveeeiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeee e 7

4.4, GOt 8 MAITOX CATAD: ..t e e e e et et e e e e et eeeeeeeeeeeeaeeeeeeeeeeesesesesesesessssssssessssnsssnssnnns 7

4.5. GOt 8 PermEdia CATAPottt ettt e et eeeeeeeeeeeeeeeeeeeeeeeeeseseresesessssssesessssssnsnssnnns 8

4.6. GOt AN ATT CATA?. ..o oeeeeeeeeeeeeeeeeeeeee ettt e e e e et e eeeeeeeeeeeaeeeeeeeeeeeeesesesesesesessssesessssnsssnsnnnns 9

4.7. Which graphic cards are VESA 2.0 cOMPLANE?......coouiiiiieiiieiieiieieeieeieeeeie e 10

4.8. Can I compile vesafb as a mOdUIE?.........coouiiiiiiiiie s 11

4.9. How do I MmOdify the CUISOL. .. ccuiitiiiieiieie ettt ettt ettt ettt b et e e eeean 11

5. Using framebuffer devices on m68k platforms 13
S.1. AtArl PIALFOTIIIS ..o ettt ettt ettt et e bt e bt e bt e bt e bt e be e be e be e bt e bt e beentean 13

S5.1.1. What modes are available?........coooiiiiiiieeeeeeeeeeeeeeeee ettt et e e e e reeeeeeeeeaeeeaeeeeeaenaeas 13

5.1.2. Additional SUDOPHIOMS. .. ecuveeueeeuieeieetieieete ettt ettt ettt e bt et e bt et e bt e bt ebeebeebeebeenbeeneeas 13

5.2, AMIZA PIATFOIIIIS o uveeuteeute ettt ettt et ettt et et e et et e e bt e bt e bt e be e teenbe e bt enbeenbeeneean 15

5.2.1. What modes are available?........coooiiiiiiieeeeeeeeeeeeeeeee ettt ettt e e e e reeeeeeeeeeeeeaeeeaeaeaeeas 15

5.2.2. Additional SUDOPHIOMS. .. ecuveeueeeuieeieeieeteete ettt ettt ettt et et et et e bt e bt ebeebeebeebeenbeeneean 16

5.2.3. Supported Amiga graphic eXpansion DOALdS.........cccueerueerieerieirierieeieeeeee e 16

5.2.4. Macintosh PIAtFOTIIISeeuveeteeie ettt ettt ettt ettt e et esbe e b ebeeneean 16

6. Using framebuffer devices on PowerPC platforms 17
7. Using framebuffer devices on Alpha platforms 18
7.1. What MmOdes are avVailabLE?.........uuueneiieeieeeeieeeeieeeeeee ettt et e et e ee et e s e s eessseseseessnnanes 18

7.2. Which graphic cards can work on AIPhaZ........cccooiiiiiiiiiiiieeee et 18

8. Using framebuffer devices on SPARC platforms 19
8.1. Which graphic cards can work on the SPARCccooiiiiiiiiiii et 19

8.2. Configuring the framebuffer deVICESeivuiiiiiiiiie et 19

9. Using framebuffer devices on MIPS platforms 21
10. Using framebuffer devices on ARM platforms 22
L0 T INEEWITIAETS: ettt ettt ettt ettt e eeeeeeeeeeeeeeeeeeeeeeeseseseeeesesesesesesesasassssssssssssssssssssssnsssssssssassnenes 22

10.2. ACOIT ATCHITIIEAES. .. .vvveeeeeeeeeeeeeeeeeeee ettt et et et et et et e e e e e e e e aaaasasasssasasassasanenes 22

10.3. Other ARM ports (SATTT0S €. L)..eeueeieiiiiiieiieie ettt ettt ettt ettt ettt s eesaee e eas 22

11. Using multi-headed framebuffers 23
L1 T, TIEEOQUCKION . ettt ettt ettt e e e e e e eeeeeeeeeeeeeeeeeseeeeeesesesesesssasssasssssssssesssssssssssnssssassssasananes 23

L L2 FEEADACK . ettt ettt et e et e e e e e e e e e e e e e e e e e et e e e et e e e e e e e e e e e e aa e —aana—_———————————————atatatatataae 23

113, COMEIIDULOTS. . ettt ettt ettt et e e et e eeeeeeeeeeeeeeeeeeeeseseseeeesesesesesssasasassssssssssssssssssssssnssssassssssssenes 23

Framebuffer HOWTO

Table of Contents
11. Using multi-headed framebuffers

11.4. Standard DISCIAIIMIEEuuuuveeeeeeieiiiiiiiieeeeeeeeee et e e e e e e e e e e e e e et e e e e e e eeeeseeeeesesassssssssssasasssensssssssssssssssseseseees 23

11.5. Copyright INFOIMATION. . o.veeuteeuteeteete ettt ettt ettt et ettt e et et e et esateeateeateeateeaeesaeeeas 23

11.6. What hardware iS SUPPOILEA?.......cecuiiiiiiiiieiie ettt ettt ettt ettt eaee s 24

11.7. COMMETCIAL SUDDOTE. ... eeutteutteutteteeteete et et eteeate et et e eateeateeabesabeembeemeeeaeesaeesatesaseeabesaseensesneesnseans 24

11.8. Getting all the STUTE.......cocuiii ettt ettt ettt st 24

11.9. GENG STATEEA. ..o euveeuteenteeie ettt ettt ettt ettt ettt et et e eabe st e eateeateeateeateeateeaseeabeeaeeentesaeesateeas 24

11.9. 1. IMIOVE @ COMSOLE OVET . ettt eeeeeeeeeeeeeeeeseseeeseeeaeeeeseeeeeeeesesesesesssssssssssssssnnnnnes 25

11.9.2. Use "" to adjust the settings on this second display........c.cceeeeeveirieriiirieeiieeeeieeie e 25

11.9.3. Set up X for framebuffer SUPPOLL........eeovieiieiiiiiei et 25

11.9.4. Try starting the X server on the second diSplay.........cceoeeruieieeriiiieniiieie e 26

L1 10, SUMIIIATY. ¢ .teeuteente ettt ettt ettt ettt et et e bt eabeeateeateeateeabeeabeembeemeeemteeateemteeabeeabesaseemtesaeesnteans 26

11.11. Other Notes and ProDIEINIS.ccevviiiiiiiiiiieieeeeeeeeeeeeeeeeeeee ettt e e aaaeaaaaaeaeasaneees 26

11.11.1. Getting ™" (1.€. /) 10 WOTKeiiiiiieii ettt et e 27

11.11.2. USING the " DIOGIAINL. .. cevieutteieeieeie ettt ettt ettt et ettt et eeteeatesateeabeeabeeateeaeesaeesneeeas 27

11.11.3. Other uSeful COMMEANUS .. .uuuueeieeiiiiieeieeeiee ettt ettt ee e e e e eeeeeeeeeeeeeeeeeeeereeereeessesssssssesasesnnnnes 27

11.12. AppendixX A. OCtAVE """ SCIIPE....veeteeteeieeteete et et et et ete et ete et eeteeatesaeesabesabeeabeeaeeeneesaeesneeens 27

11.13. Appendix B. Bourne SHEell " SCIIPE.....ueerteiieeieeiieieeie ettt ettt ettt st ettt 28

12. Usin hanging Fonts 29
13. Changing Console Modes 30
14. Setting up the X11 FBdev driver. 31
15. How do I convert XFree86 mode-lines into framebuffer device timings? 33
16. Changing the Linux L.oga 35
17. Looking for further information 36

1. Contributors

Thanks go to those people listed below who helped improve the Framebuffer HOWTO. I've taken the liberty
of removing e-mail addresses as this document is more than ten years old!

e Jeff Noxon

¢ Francis Devereux

e Andreas Ehliar

e Martin McCarthy

¢ Simon Kenyon

¢ David Ford

e Chris Black

e N. Becker

® Bob Tracy

® Marius Hjelle

¢ James Cassidy

e Andreas U. Trottmann

® Lech Szychowski

e Aaron Tiensivu

¢ Jan-Frode Myklebust for his info on permedia cards
¢ Many others too numerous to add, but thanks!

Thanks go to Rick Niles who has very kindly handed over his Multi-Head Mini-HOWTO for inclusion in this
HOWTO.

Thanks to these people listed below who built libc5/glibc2 versions of the XF86_FBdev X11 framebuffer
driver for X11 on x86 platforms:

® Brion Vibber
e Gerd Knorr

And, of course, the authors of the framebuffer device drivers:

® Martin Schaller - original author of the framebuffer driver concept
® Roman Hodek

e Andreas Schwab

e Giinther Kelleter

¢ Geert Uytterhoeven
® Roman Zippel

® Pavel Machek

¢ Gerd Knorr

® Miguel de Icaza

¢ David Carter

e William Ricklidge

e Jes Sorensen

® Sigurdur Asgeirsson
¢ Jeffrey Kuskin

® Michal Rehacek

® Peter Zaitcev

¢ David S. Miller

1. Contributors 1

Framebuffer HOWTO

¢ Dave Redman

¢ Jay Estabrook

e Martin Mares

e Dan Jacobowitz

¢ Emmnauel Marty

¢ Eddie C. Dost

e Jakub Jelinek

¢ Philip Blundell

¢ Anyone else, stand up and be counted!

1. Contributors

2. What is a framebuffer device?

A framebuffer device is an abstraction for the graphic hardware. It represents the frame buffer of some video
hardware, and allows application software to access the graphic hardware through a well-defined interface, so
that the software doesn't need to know anything about the low-level interface stuff [Taken from Geert
Uytterhoeven's framebuffer.txt in the linux kernel sources]

2. What is a framebuffer device?

3. What advantages does framebuffer devices
have?

Penguin logo! :0) Seriously, the major advantage of the framebuffer devices is that it presents a generic
interface across all platforms. It was the case until late in the 2.1.x kernel development process that the x86
platform had console drivers completely different from the other console drivers for other platforms. With the
introduction of the 2.1.109 kernel, all this has changed for the better, and introduced more uniform handling
of the console under the x86 platforms and also introduced true bitmapped graphical consoles bearing the
Penguin logo on x86 for the first time, and allowed code to be shared across different platforms. Note that
2.0.x kernels do not support framebuffer devices, but it is possible someday someone will backport the code
from the 2.1.x kernels to 2.0.x kernels. There is an exception to that rule in that the 0.9.x kernel port for m68k
platforms does have the framebuffer device support included.

With the release of the 2.2.x kernels, framebuffer device support is very solid and stable. You should use the
framebuffer device if your graphic card supports it, if you are using 2.2.x kernels. Older 2.0.x kernels does not
support framebuffer devices, at least on the x86 platform.

¢ 0.9.x - introduced m68k framebuffer devices. Note that m68k 0.9.x is functionally equivalent to x86
1.0.9 (plus 1.2.x enhancements)

® 2.1.107 - introduced x86 framebuffer/new console devices and added generic support, without
scrollback buffer support.

® 2.1.113 - scrollback buffer support added to vgacon.

® 2.1.116 - scrollback buffer support added to vesafb.

¢ 2.2.x - includes matroxfb (Matrox cards) and atyfb (ATI cards).

There are some cool features of the framebuffer devices, in that you can give generic options to the kernel at
bootup-time, including options specific to a particular framebuffer device. These are:

¢ video=xxx:off - disable probing for a particular framebuffer device
¢ video=map:octal-number - maps the virtual consoles (VCs) to framebuffer (FB) devices
] ¢ video=map:01 will map VCO to FBO, VC1 to FB1, VC2 to FBO, VC3 to FB1...
¢ video=map:0132 will map VCO to FBO, VCI to FB1, VC2 to FB3, VC4 to FB2, VCS5 to
FBO...

Normally framebuffer devices are probed for in the order specified in the kernel, but by specifying the
video=xxx option, you can add the specific framebuffer device you want probed before the others specified in
the kernel.

3. What advantages does framebuffer devices have? 4

4. Using framebuffer devices on x86 platforms
4.1. What is vesafb?

Vesafb is a framebuffer driver for x86 architecture that works with VESA 2.0 compliant graphic cards. It is
closely related to the framebuffer device drivers in the kernel.

vesafb is a display driver that enables the use of graphical modes on your x86 platform for bitmapped text
consoles. It can also display a logo, which is probably the main reason why you'd want to use vesafb :0)

Unfortunately, you can not use vesafb successfully with VESA 1.2 cards. This is because these 1.2 cards do
not use linear frame buffering. Linear frame buffering simply means that the system's CPU is able to access
every bit of the display. Historically, older graphic adapters could allow the CPU to access only 64K at a time,
hence the limitations of the dreadful CGA/EGA graphic modes! It may be that someone will write a vesafb12
device driver for these cards, but this will use up precious kernel memory and involve a nasty hack.

There is however a potential workaround to add VESA 2.0 extensions for your legacy VESA 1.2 card. You
may be able to download a TSR type program that will run from DOS, and used with loadlin, can help
configure the card for the appropriate graphic console modes. Note that this will not always work, as an
example some Cirrus Logic cards such as the VLB 54xx series are mapped to a range of memory addresses
(for example, within the 15MB-16MB range) for frame buffering which preludes these from being used
successfully with systems that have more than 32MB of memory. There is a way to make this work, i.e. if you
have a BIOS option to leave a memory hole at 15MB-16MB range, it might work, Linux doesn't support the
use of memory holes. However there are patches for this option though [Who has these and where do one gets
them from?]. If you wish to experiment with this option, there are plenty of TSR style programs available, a
prime example is UNIVBE, which can be found on the Internet.

Alternatively, you may be able to download kernel patches to allow your VESA 1.2 card to work with the
VESA framebuffer driver. For example, there are patches for use with older S3 boards (such as S3 Trio, S3
Virge) that supports VESA 1.2. For these cards, you can pick up patches from

ftp://ccssu.crimea.ua/pub/linux/kernel/v2.2/unofficial/s3new.diff.gz.

4.2. How do | activate the vesafb drivers?

Assuming you are using menuconfig, you will need to do the following steps:

If your processor (on x86 platforms) supports MTRRs, enable this. It speeds up memory copies between the
processor and the graphic card, but not strictly necessary. You can of course, do this after you have the
console device working.

IMPORTANT: For 2.1.x kernels, go into the Code Maturity Level menu, and enable the prompt for
development and / or incomplete drivers. This is no longer necessary for the 2.2.x kernels.

Go into the Console Drivers menu, and enable the following:

® VGA Text Console

¢ Video Selection Support

¢ Support for frame buffer devices (experimental)
¢ VESA VGA Graphic console

4. Using framebuffer devices on x86 platforms 5

ftp://ccssu.crimea.ua/pub/linux/kernel/v2.2/unofficial/s3new.diff.gz

Framebuffer HOWTO

¢ Advanced Low Level Drivers
® Select Mono, 2bpp, 4bpp, 8bpp, 16bpp, 24bpp and 32bpp packed pixel drivers

VGA Chipset Support (text only) - vgafb - used to be part of the list above, but it has been removed as it is
now deprecated and no longer supported. It will be removed shortly. Use VGA Text Console (fbcon) instead.
VGA Character/Attributes is only used with VGA Chipset Support, and doesn't need to be selected.

Ensure that the Mac variable bpp packed pixel support is not enabled. Linux kernel release 2.1.111 (and 112)
seemed to enable this automatically if Advanced Low Level Drivers was selected for the first time. This no
longer happens with 2.1.113.

There is also the option to compile in fonts into memory, but this isn't really necessary, and you can always
use kbd-0.99's (see section on fonts) setfont utility to change fonts by loading fonts into the console device.

Make sure these aren't going to be modules. [Not sure if it's possible to build them as modules yet - please
correct me on this]

You'll need to create the framebuffer device in /dev. You need one per framebuffer device, so all you need to
do is to type in mknod /dev/fb0 c 29 0 for the first one. Subsequent ones would be in multiples of 32, so for
example to create /dev/fbl, you would need to type in mknod /dev/fb1 ¢ 29 32, and so on up to the eighth
framebuffer device (mknod /dev/fb7 ¢ 29 224)

Then rebuild the kernel, modify /etc/lilo.conf to include the VGA=ASK parameter, and run lilo, this is
required in order for you to be able to select the modes you wish to use.

Here's a sample LILO configuration (taken from my machine)

LILO configuration file boot = /dev/hda3 delay = 30 prompt vga = ASK # Let user enter the desired modes
image = /vmlinuz root = /dev/hda3 label = Linux read-only # Non-UMSDOS filesystems should be mounted
read-only for checking

Reboot the kernel, and as a simple test, try entering 0301 at the VGA prompt (this will give you 640x480 @
256), and you should be able to see a cute little Penguin logo.

Note, that at the VGA prompt, you're required to type in the number in the format of "0" plus the three-digit
number, and miss out the 'x'. This isn't necessary if you're using LILO.

Once you can see that's working well, you can explore the various VESA modes (see below) and decide on
the one that you like the best, and hardwire that into the "VGA=x" parameter in lilo.conf. When you have
chosen the one you like the best, look up the equivalent hexadecimal number from the table below and use
that (i.e. for 1280x1024 @ 256, you just use "VGA=0x307"), and re-run lilo. That's all there it is to it. For
further references, read the LoadLin/LILO HOWTOs.

NOTE! vesafb does not enable scrollback buffering as a default. You will need to pass to the kernel the option
to enable it. Use video=vesa:ypan or video=vesa:ywrap to activate it. Both does the same thing, but in
different ways. ywrap is a lot faster than ypan but may not work on slightly broken VESA 2.0 graphic cards.
ypan is slower than ywrap but a lot more compatible. This option is only present in kernel 2.1.116 and above.
Earlier kernels did not have the ability to allow scrollback buffering in vesafb.

4. Using framebuffer devices on x86 platforms 6

Framebuffer HOWTO

4.3. What VESA modes are available to me?

This really depends on the type of VESA 2.0 compliant graphic card that you have in your system, and the
amount of video memory available. This is just a matter of testing which modes work best for your graphic
card.

The following table shows the mode numbers you can input at the VGA prompt or for use with the LILO

program. (actually these numbers are plus 0x200 to make it easier to refer to the table)

Table 1. VESA modes
Depth| 640x400 640x480 800x600 | 1024x768 | 1152x864 | 1280x1024 | 1600x1200
4 bits ? ? 0x302 ? ? ? ?
8 bits| 0x300 0x301 0x303 0x305 0x161 0x307 0x31C
15 bits ? 0x310 0x313 0x316 0x162 0x319 0x31D
16 bits ? 0x311 0x314 0x317 0x163 0x31A 0x31E
24 bits ? 0x312 0x315 0x318 ? 0x31B 0x31F
32 bits ? ? ? ? 0x164 ? ?

Key: 8 bits = 256 colours, 15 bits = 32,768 colours, 16 bits = 65,536 colours, 24 bits = 16.8 million colours,
32 bits - same as 24 bits, but the extra 8 bits can be used for other things, and fits perfectly on a 32 bit
PCI/VLB/EISA bus.

Additional modes are at the discretion of the manufacturer, as the VESA 2.0 document only defines modes up
to Ox31F. You may need to do some fiddling around to find these extra modes.

4.4. Got a Matrox card?

If you've got a Matrox graphic card, you don't actually need vesafb, you need the matroxfb driver instead.
This greatly enhances the capabilities of your card. Matroxfb will work with Matrox Mystique Millennium I
& 11, G100 and G200. It also supports multiheaded systems (that is, if you have two Matrox cards in your
machine, you can use two displays on the same machine!). To configure for Matrox, you will need to do the
following:

You might want to upgrade the Matrox BIOS first, you can download the BIOS upgrade from
http://www.matrox.com/mgaweb/drivers/ftp bios.htm Beware that you will need DOS to do this.

Go into the Code Maturity Level menu, and enable the prompt for development and/or incomplete drivers
[note this may change for future kernels - when this happens, this HOWTO will be revised]

Go into the Console Drivers menu, and enable the following:

® VGA Text Console

¢ Video Selection Support

¢ Support for frame buffer devices (experimental)

e Matrox Acceleration

¢ Select the following depending on the card that you have
. ¢ Millennium I/ IT support

4. Using framebuffer devices on x86 platforms 7

http://www.matrox.com/mgaweb/drivers/ftp_bios.htm

Framebuffer HOWTO

¢ Mystique support
¢ G100 / G200 support
¢ Enable Multihead Support if you want to use more than one Matrox card
¢ Advanced Low Level Drivers
e elect Mono, 2bpp, 4bpp, 8bpp, 16bpp, 24bpp and 32bpp packed pixel drivers

Rebuild your kernel. Then you will need to modify your lilo.conf file to enable the Matroxfb device. The
quickest and simplest way is re-use mine.

LILO configuration file boot = /dev/hda3 delay = 30 prompt vga = 792 # You need to do this so it boots up
in a sane state # Linux bootable partition config begins image = /vmlinuz append = "video=matrox:vesa:440"
then switch to Matroxfb root = /dev/hda3 label = Linux read-only # Non-UMSDOS filesystems should be
mounted read-only for checking

Lastly, you'll need to create the framebuffer device in /dev. You need one per framebuffer device, so all you
need to do is to type in mknod /dev/fb0 c 29 0 for the first one. Subsequent ones would be in multiples of 32,
so for example to create /dev/fb1, you would need to type in mknod /dev/fb1 ¢ 29 32, and so on up to the eight
framebuffer device (mknod /dev/fb7 ¢ 29 2241)

And that should be it! [NOTE: Is anyone using this multiheaded support, please get in touch with me ASAP -
I need to talk to you about it so I can document it!

4.5. Got a Permedia card?

Permedia cards cannot be used with the vesafb driver, but fortunately, there is the Permedia framebuffer
driver available to use. Assuming you are using menuconfig, do the following:

Go into the Code Maturity Level menu, and enable the prompt for development and/or incomplete drivers
[note this may change for future kernels - when this happens, this HOWTO will be revised]

Go into the Console Drivers menu and select the following:

® VGA Text Console
¢ Video Selection Support
¢ Support for frame buffer devices (experimental)
¢ Permedia2 support (experimental)
¢ Generic Permedia2 PCI board support
¢ Advanced Low Level Drivers
¢ Select Mono, 2bpp, 4bpp, 8bpp, 16bpp, 24bpp and 32bpp packed pixel drivers
¢ Optionally, select the following, if you wish to use the compiled in fonts
. ¢ Select compiled-in fonts
¢ Select Sparc console 12x22 font

Rebuild your kernel. Then you will need to modify your lilo.conf file to enable the pm2fb device. The
quickest and simplest way is re-use the following:

LILO configuration file boot = /dev/hda3 delay = 30 prompt vga = 792 # You need to do this so it boots up
in a sane state # Linux bootable partition config begins image = /vmlinuz append =
"video=pm2fb:mode:1024x768-75,font: SUN12x22,ypan" # then switch to pm2fb root = /dev/hda3 label =
Linux read-only # Non-UMSDOS filesystems should be mounted read-only for checking

4. Using framebuffer devices on x86 platforms 8

Framebuffer HOWTO

The line "pm2fb:mode:1024x768-75,font: SUN12x22,ypan" indicates you are selecting a 1024x768 mode at
75Hz, with the SUN12x22 font selected (if you did select it), including ypan for scrollback support. You may
select other modes if you desire.

Lastly, you'll need to create the framebuffer device in /dev. You need one per framebuffer device, so all you
need to do is to type in mknod /dev/fb0 c 29 O for the first one. Subsequent ones would be in multiples of 32,
so for example to create /dev/fb1, you would need to type in mknod /dev/fb1 ¢ 29 32, and so on up to the eight
framebuffer device (mknod /dev/fb7 ¢ 29 224)

For more information on the other features of the Permedia framebuffer driver, point your browser at
http://www.cs.unibo.it/~nardinoc/pm2fb/index.html

video=pm2fb:[option[,option[,option...]]]
where option is one of the following:

e off - disables the driver
® mode:resolution - sets the console resolution. The modes have been taken from the fb.modes.ATI file
in Geert's tbset package. The depth for all the modes is 8 bpp. This the list of available modes:
o ¢ 640x480-(60,72,75,90,100)
¢ 640x480-(60,72,75,90,100)
¢ 1024x768-(60,70,72,75,90,100,illo) illo=80KHz 100Hz
¢ 152x864-(60,70,75,80)
¢ 1280x1024-(60,70,74,75)
¢ 1600x1200-(60,66,76)
® The default resolution is 640x480-60
¢ font:name - sets the console font. Example font:SUN12x12
® ypan - sets the current virtual height as big as video memory permits.
¢ oldmem - used for CybervisionPPC boards only with Fujitsi SGRAMs mounted. Applies to all
CyberVisionPPCs made before 30-Dec-1998.
e virtual - used with kernels capable of remapping the PCI regions

4.6. Got an ATI card?

[Note: This information is at best, only second-hand or third-hand, since I don't have an ATI card to test it
with. Feel free to correct me if I am wrong or flame me!] 8)

ATI cards can be used with the vesafb driver, but you may or may not have problems, depending on how
horribly broken the card is. Fortunately, there is the atyfb framebuffer driver available to use. Assuming you
are using menuconfig, do the following:

Go into the Code Maturity Level menu, and enable the prompt for development and/or incomplete drivers
[note this may change for future kernels - when this happens, this HOWTO will be revised]

Go into the Console Drivers menu and select the following:
® VGA Text Console
¢ Video Selection Support

¢ Support for frame buffer devices (experimental)
e ATI Mach64 display support

4. Using framebuffer devices on x86 platforms 9

http://www.cs.unibo.it/~nardinoc/pm2fb/index.html

Framebuffer HOWTO

¢ Advanced Low Level Drivers
® Select Mono, 2bpp, 4bpp, 8bpp, 16bpp, 24bpp and 32bpp packed pixel drivers
¢ Optionally, select the following, if you wish to use the compiled in fonts
o ¢ Select compiled-in fonts
¢ Select Sparc console 12x22 font

Rebuild your kernel. Then you will need to modify your lilo.conf file to enable the atyfb device. The quickest
and simplest way is re-use the following:

LILO configuration file boot = /dev/hda3 delay = 30 prompt vga = 792 # You need to do this so it boots up
in a sane state # Linux bootable partition config begins image = /vmlinuz append =
"video=atyfb:mode:1024x768,font:SUN12x22" root = /dev/hda3 label = Linux read-only # Non-UMSDOS
filesystems should be mounted read-only for checking

The line "atyfb:mode:1024x768,font:SUN12x22" indicates you are selecting a 1024x768 mode.

Lastly, you'll need to create the framebuffer device in /dev. You need one per framebuffer device, so all you
need to do is to type in mknod /dev/fb0 c 29 0 for the first one. Subsequent ones would be in multiples of 32,
so for example to create /dev/fb1, you would need to type in mknod /dev/fb1 ¢ 29 32, and so on up to the eight
framebuffer device (mknod /dev/fb7 ¢ 29 224)

video=atyfb:[option[,option[,option...]]]
where option is one of the following:

e font - selects font to use (compiled into kernel)

¢ noblink - turns off blinking

¢ noaccel - disables acceleration

¢ yram - how much video memory is there on the card
e pll - unknown

¢ mclk - unknown

¢ ymode - unknown

e cmode - sets colour depth (4, 8, 15, 16, 24 and 32)

4.7. Which graphic cards are VESA 2.0 compliant?

This lists all the graphic devices that are known to work with the vesafb device driver:

¢ ATI PCI VideoExpression 2MB (max. 1280x1024 @ 8bit)
e ATI PCI All-in-Wonder

e Matrox Millennium PCI - BIOS v3.0

e Matrox Millennium II PCI - BIOS v1.5

e Matrox Millennium II AGP - BIOS v1.4

e Matrox Millennium G200 AGP - BIOS v1.3

® Matrox Mystique & Mystique 220 PCI - BIOS v1.8
® Matrox Mystique G200 AGP - BIOS v1.3

e Matrox Productiva G100 AGP - BIOS v1.4

e All Riva 128 based cards

¢ Diamond Viper V330 PCI 4MB

® Genoa Phantom 3D/S3 ViRGE/DX

4. Using framebuffer devices on x86 platforms 10

Framebuffer HOWTO

e Hercules Stingray 128/3D with TV output

¢ Hercules Stingray 128/3D without TV output - needs BIOS upgrade (free from
support@hercules.com)

* SiS 6326 PCI/AGP 4MB

e STB Lightspeed 128 (Nvida Riva 128 based) PCI

¢ STB Velocity 128 (Nvida Riva 128 based) PCI

e Jaton Video-58P ET6000 PCI 2MB-4MB (max. 1600x1200 @ 8bit)

® Voodoo2 2000

This list below blacklists graphic cards that doesn't work with the vesafb device:

e TBD

4.8. Can | compile vesafb as a module?

As far as is known, vesafb can't be modularised, although at some point in time, the developer of vesafb may
decide to modify the sources for modularising. Note that even if modularising is possible, at boot time you
will not be able to see any output on the display until vesafb is modprobed. It's probably a lot wiser to leave it
in the kernel, for these cases when there are booting problems.

4.9. How do | modify the cursor
With thanks to Martin Mares, taken from his VGA-softcursor.txt document.

Linux now has some ability to manipulate cursor appearance. Normally, you can set the size of hardware
cursor (and also work around some ugly bugs in those miserable Trident cards -- see #define
TRIDENT_GLITCH in drivers/char/vga.c). In case you enable "Software generated cursor" in the system
configuration, you can play a few new tricks: you can make your cursor look like a non-blinking red block,
make it inverse background of the character it's over or to highlight that character and still choose whether the
original hardware cursor should remain visible or not. There may be other things I have never thought of.

The cursor appearance is controlled by a <ESC>[?1;2;3c escape sequence where 1, 2 and 3 are parameters
described below. If you omit any of them, they will default to zeroes.

Parameter 1 specifies cursor size (0 = default, 1 = invisible, 2 = underline, ..., 8 = full block) + 16 if you want
the software cursor to be applied + 32 if you want to always change the background colour + 64 if you dislike
having the background the same as the foreground. Highlights are ignored for the last two flags.

The second parameter selects character attribute bits you want to change (by simply XORing them with the
value of this parameter). On standard VGA, the high four bits specify background and the low four the
foreground. In both groups, low three bits set colour (as in normal colour codes used by the console) and the
most significant one turns on highlight (or sometimes blinking - it depends on the configuration of your
VGA).

The third parameter consists of character attribute bits you want to set. Bit setting takes place before bit
toggling, so you can simply clear a bit by including it in both the set mask and the toggle mask.

¢ To get normal blinking underline, use: echo -e \033<ESC>[72¢'
¢ To get blinking block, use: echo -e \033<ESC>[?6c'

4. Using framebuffer devices on x86 platforms 11

Framebuffer HOWTO
® To get red non-blinking block, use: echo -e \033i<ESC>[?17;0;64c'

4. Using framebuffer devices on x86 platforms

12

5. Using framebuffer devices on m68k platforms

5.1. Atari platforms

This section describe framebuffer options on Atari platforms

5.1.1. What modes are available?

Table 2. Atari modes
Depth| 320x200 | 320x480 | 640x200 | 640x400 | 640x480 | 896x608 | 1280x960
1 bit sthigh vga?2 falh2 tthigh
2 bits stmid vgad
4 bits| stlow ttmid/vgal6| falhl6
8 bits ttlow vga256

ttlow, ttmid and ttmhigh are only used on the TT, whilst vga2, vga4, vgal6, vga256, falh3 and falh16 are only

used on the Falcon.

When used with the kernel option video=xxx, and no suboption is given, the kernel will probe for the modes

in the following order until it finds a mode that is possible with the given hardware:

e ttmid
e tthigh
® vgal6
e sthigh
® stmid

You may specify the particular mode you wish to use, if you don't wish to auto-probe for the modes you
desire. For example, video=vgal6 gives you a 4 bit 640x480 display.

5.1.2. Additional suboptions

There are a number of suboptions available with the video=xxx parameter:

e inverse - inverts the display so that the background/foreground colours are reversed. Normally the
background is black, but with this suboption, it gets sets to white.
¢ font - sets the font to use in text modes. Currently you can only select VGA8x8, VGAS8x16,

PEARLS8x8. The default is to use the VGA8x8 only if the vertical size of the display is less than 400

pixels, otherwise it defaults to VGA8x16.

¢ internal - a very interesting option. See the next section for information.
e external - as above.

® monitorcap - describes the capabilities for multisyncs. DON'T use with a fixed sync monitor!

5. Using framebuffer devices on m68k platforms

Framebuffer HOWTO
5.1.2.1. Using the suboption

Syntax: internal:(xres);(yres)[;(xres_max);(yres_max);(offset)]

This option specifies the capabilities of some extended internal video hardware, i.e OverScan modes. (xres)
and (yres) gives the extended dimensions of the screen.

If your OverScan mode needs a black border, you'll need to write the last three arguments of the internal:
suboption. (xres_max) is the maximum line length that the hardware allows, (yres_max) is the maximum
number of lines, and (offset) is the offset of the visible part of the screen memory to its physical start, in bytes.

Often extended internal video hardware has to be activated, for this you will need the "switches=*" options.
[Note: Author would like extra information on this, please. The m68k documentation in the kernel isn't clear
enough on this point, and he doesn't have an Atari! Examples would be helpful too]

5.1.2.2. Using the suboption

Syntax:
external:(xres);(yres);(depth);(org);(scrmem)[;(scrlen)[;(vgabase)[;(colw)[;(coltype)[;(xres_virtual)]]]]]

This is quite complicated, so this document will attempt to explain as clearly as possible, but the Author
would appreciate if someone would give this a look over and see that he hasn't fscked something up! :0)

This suboption specifies that you have an external video hardware (most likely a graphic board), and how to
use it with Linux. The kernel is basically limited to what it knows of the internal video hardware, so you have
to supply the parameters it needs in order to be able to use external video hardware. There are two limitations;
you must switch to that mode before booting, and once booted, you can't change modes.

The first three parameters are obvious; gives the dimensions of the screen as pixel height, width and depth.
The depth supplied should be the number of colours is 2n that of the number of planes required. For
example, if you desire to use a 256 colour display, then you need to give 8 as the depth. This depends on the
external graphic hardware, though so you will be limited by what the hardware can do.

Following from this, you also need to tell the kernel how the video memory is organised - supply a letter as
the (org) parameter

¢ n - use normal planes, i.e one whole plane after another

¢ i - use interleaved planes, i.e. 16 bits of the first plane, then the 16 bits of the next plane and so on.
Only built-in Atari video modes uses this - and there are no graphic card that supports this mode.

* p - use packed pixels, i.e consecutive bits stands for all planes for a pixel. This is the most common
mode for 256 colour displays on graphic cards.

e t - use true colour, i.e this is actually packed pixels, but does not require a colour lookup table like
what other packed pixel modes uses. These modes are normally 24 bit displays, and provides 16.8
million colours.

However, for monochrome modes, the (org) parameter has a different meaning:

® n - use normal colours, i.e. 0 = white, 1 = black
e j - use inverted colours, i.e. O = black, 1 = white

5. Using framebuffer devices on m68k platforms 14

Framebuffer HOWTO

The next important item about the video hardware is the base address of the video memory. That is given by
the (scrmem) parameter as a hexadecimal number with an Ox prefix. You will need to find this out from the
documentation that comes with your external video hardware.

The next paramter (scrlen) tells the kernel about the size of the video memory. If it's missing, this is calculated
from the (xres), and (depth) parameters. It's not useful to write a value here these days anyway. To leave this
empty, give two consecutive semicolons if you need to give the (vgabase) parameter, otherwise, just leave it.

The (vgabase) parameter is optional. If it isn't given, the kernel can't read/write any colour registers of the
video hardware, and thus you have to set up the appropriate colours before you boot Linux. But if your card is
VGA compatible, you can give it the address where it can locate the VGA register set so it can change the
colour lookup tables. This information can be found in your external video hardware documentation. To make
this clear, (vgabase) is the base address, i.e a 4k aligned address. For reading/writing the colour registers, the
kernel uses the address range between (vgabase) + 0x3c7 and (vgabase) + 0x3c9. This parameter is given in
hexadecimal and must have a 0x prefix, just like (scrmem). (colw) is only meaningful, if the (vgabase)
parameter is specified. It tells the kernel how wide each of the colour register is, i.e the number of bits per
single colour (red/green/blue). Default is usually 6 bits, but it is also common to specify 8 bits.

(xres_virtual) is only required for the ProMST/ET4000 cards where the physical linelength differs from the
visible length. With ProMST, you need to supply 2048, whilst for ET4000, it depends on the initialisation of
the video board.

5.2. Amiga platforms

This section describes the options for Amigas, which are quite similar to those of the Atari platform

5.2.1. What modes are available?

This depends on the chipset used in the Amiga. There are three main ones; OCS, ECS and AGA which all
uses the colour frame buffers.

¢ NTSC modes
. 4 ntsc - 640x200

4 ntsc-lace - 640x400
¢ PAL modes
. ¢ pal - 640x256

¢ pal-lace - 640x512
¢ ECS modes - 2 bit colours on ECS chipsets, 8 bit colours on AGA chipsets only
. ¢ multiscan - 640x480
multiscan-lace - 640x960
euro36 - 640x200
euro36-lace - 640x400
euro72 - 640x480
euro72-lace - 640x800
super72 - 800x300
super72-lace - 800x400
¢ dblntsc - 640x200
¢ dblpal - 640x256
¢ dblntsc-ff - 640x400
¢ dblntsc-lace - 640x800

*® & & 6 O 0o

5. Using framebuffer devices on m68k platforms 15

Framebuffer HOWTO

¢ dblpal-ff - 640x512

¢ dblpal-lace - 640x1024
® VGA modes - 2 bit colours on ECS chipsets, 8 bit colours on AGA chipsets
o ¢ vga - 640x480

¢ vga70 - 640x400

5.2.2. Additional suboptions
These are similar to the Atari suboptions. They are:

¢ depth - specifies the pixel bit depth

¢ inverse - does the same thing as the Atari suboption

¢ font - does the same thing as the Atari suboption, although the PEARL8x8 font is used instead of the
VGAS8xS8 font if the display size is less than 400 pixels wide.

® monitorcap - specifies the capabilities of the multisync monitor. Do not use with fixed sync monitors

5.2.3. Supported Amiga graphic expansion boards

¢ Phase5 CyberVision 64 (S3 Trio64 chipset)

¢ Phase5 CyberVision 64 3D (S3 ViRGE chipset)

e MacroSystems Retina Z3 (NCR 77C32BLT chipset)

¢ Helfrich Piccolo, SD64, GVP ECS Spectrum, Village Tronic Picasso II / II+ and IV (Cirrus Logic
GD542x / 543x chipsets)

5.2.4. Macintosh platforms

Currently, the framebuffer device implemented only supports the mode selected in MacOS before booting into
Linux, and also supports 1, 2, 4 and 8 bit colours modes.

Framebuffer suboptions are selected using the following syntax:
video=macfb::<inverse>

You can select fonts such as VGA8x8, VGA8x16 and 6x11 etc. The inverse option allows you to use reverse
video.

5. Using framebuffer devices on m68k platforms 16

6. Using framebuffer devices on PowerPC
platforms

The author would love to receive information on the use of framebuffer device drivers on this platform.

6. Using framebuffer devices on PowerPC platforms

17

7. Using framebuffer devices on Alpha platforms

7.1. What modes are available?

So far, there is only the TGA PCI card, which only does 80x30 with a resolution of 640x480 at either 8 bits or
24 / 32 bits.

7.2. Which graphic cards can work on Alpha?
This lists all the graphic cards that are known to work:

¢ DEC TGA PCI (DEC21030) - 640x480 & 8 bits or 24 / 32 bits versions

7. Using framebuffer devices on Alpha platforms 18

8. Using framebuffer devices on SPARC platforms
8.1. Which graphic cards can work on the SPARC

This lists all the graphic cards available:

* MG1 /MG?2 - SBus or integrated on Sun3 - max 1600 x 1200 & mono (BWtwo)
® CGthree - Similar to MG1 / MG2 but supports colour

e GX - SBus - max. 1152 x 900 & 8 bit (CGsix)

® TurboGX - SBus - max. 1152 x 900 & 8 bit (CGsix)

® SX (SS10/SS20 only) - max. 1280 x 1024 & 24 bit (CGfourteen)
e 7X (TZX) - SBus - accelerated 24 bit 3D card (Leo)

e TCX (Sparc 4 only) - max 1280 x 1024 & 8 bit

e TCX (Sparc 5 only) - max 1152 x 900 & 24 bit

® Creator - SBus - max 1280 x 1024 & 24 bit (FFB

® Creator3D - SBus - max 1920 x 1200 & 24 bit (FFB

e ATI Mach64 - PCI - accelerated 8 / 24 bit UltraSparc only

There is the option to use the PROM to output characters to the display or to a serial console.

Also, have a look at the Sparc Frame Buffer FAQ at http://c3-a.snvll.sfba.home.com/Framebuffer.html

8.2. Configuring the framebuffer devices

During make config, you need to choose whether to compil