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Introduction

The Problem

I Large images do not fit in RAM

I Algorithms have to use multi-core CPUs

ChunkedArray

I Holds images divided into smaller blocks

I Only loads blocks currently required, caches them

Needs adjusted algorithms to be efficient
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Connected Components Labeling
Definitions

Definition
Let X ⊆ Zn, I an image on X .
Let P(I (x), I (y)) be a symmetric predicate defined for each
adjacent pair of coordinates (x , y) in X .
Define an undirected graph G = (X ,E ) by setting

(x , y) ∈ E ⇔ x is adjacent to y ∧ P(I (x), I (y)).

A labeling of I according to P is an image J on X such that

∀x , y ∈ X : J(x) = J(y)⇔ x  y in G.
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Connected Components Labeling
MapReduce

MapReduce

1. Divide problem into smaller subproblems

2. Map a function on subproblems (possibly in parallel)

3. Reduce results to a global result

MapReduce on ChunkedArrays

1. Image is already stored in separate chunks

2. Map algorithm for MultiArrays on every chunk

3. Reduce subresults to global result
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Connected Components Labeling
Implementation - Map Stage

Apply map function

I Iterate over chunks with ChunkIterator

I Use labelMultiArray to create a local labeling for each
chunk

I Save number of local labels assigned for each chunk
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Connected Components Labeling
Implementation - Reduce Stage

Goal:
Merge local labels to global labels

Unique global ids for local labels

I Calculate an id offset for each chunk such that
id offset + local label id yields globally unique label ids

Merge labels

I Union-find data structure for global label ids

I Iterate over all adjacent chunks with GridGraph

I Iterate over adjacent pixels in different chunks with
visitBorder

I Merge two pixels’ global labels if they satisfy the predicate

I Replace local labels by global labels (optional)
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Blockwise Labeling
Usage

#include <vigra/blockwise_labeling.hxx >

using namespace vigra;

int main() {

ChunkedArray <4. int >& data = ...

ChunkedArray <4, int >& labels = ...

LabelOptions options;

options.neighborhood(IndirectNeighborhood)

.background (3);

labelMultiArrayBlockwise(data ,

labels , options );

...

}
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Watershed Transform
Definitions

Definition
Let I be a grayscale image on X ⊆ Zn. I can be regarded as a
topographic relief by identifying darkness with height for every
pixel.
A drop of water put on a pixel will flow down the steepest slope
until it stops in a minimum. A watershed labeling according to the
drop of water principle is an image J on X such that

∀x , y ∈ X : J(x) = J(y)⇔ drops of water put on I at positions x and y

come to a halt in the same minimum

Problem: non-lower-complete images
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Watershed Transform
Definitions

A watershed labeling can be reduced to a connected components
labeling problem with the predicate

P(x , y)⇔ x is the lowest neighbor of y ∨
y is the lowest neighbor of x ∨
neither x nor y has a strictly lower neighbor

To decide P(x , y), all neighbors of x and y have to be
considered – bad for a blockwise algorithm (pixels on chunk
borders)
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Blockwise Watershed Transform
Implementation

Solution:

I Checkout blocks slightly larger than chunks that overlap
adjacent chunks by one pixel

I Save relative coordinate of lowest neighbor for each pixel in a
temporary array

I Use only temporary array to decide predicate and label
according to it

I Write operations only within the actual chunk size
⇒ parallelizable
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Blockwise Watershed Transform
Usage

#include <vigra/blockwise_watershed.hxx >

using namespace vigra;

int main() {

ChunkedArray <4. int >& data = ...

ChunkedArray <4, int >& labels = ...

unionFindWatershedsBlockwise(data , labels ,

IndirectNeighborhood );

...

}
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Thank you!

Martin Bidlingmaier Blockwise Algorithms


	Introduction
	Connected Components Labeling
	Definitions
	MapReduce
	Implementation
	Usage

	Watershed Transform
	Definitions
	Implementation
	Usage


