
Blockwise Algorithms

Martin Bidlingmaier

October 21, 2014

Martin Bidlingmaier Blockwise Algorithms

Outline

Introduction

Connected Components Labeling
Definitions
MapReduce
Implementation
Usage

Watershed Transform
Definitions
Implementation
Usage

Martin Bidlingmaier Blockwise Algorithms

Introduction

The Problem

I Large images do not fit in RAM

I Algorithms have to use multi-core CPUs

ChunkedArray

I Holds images divided into smaller blocks

I Only loads blocks currently required, caches them

Needs adjusted algorithms to be efficient

Martin Bidlingmaier Blockwise Algorithms

Introduction

The Problem

I Large images do not fit in RAM

I Algorithms have to use multi-core CPUs

ChunkedArray

I Holds images divided into smaller blocks

I Only loads blocks currently required, caches them

Needs adjusted algorithms to be efficient

Martin Bidlingmaier Blockwise Algorithms

Introduction

The Problem

I Large images do not fit in RAM

I Algorithms have to use multi-core CPUs

ChunkedArray

I Holds images divided into smaller blocks

I Only loads blocks currently required, caches them

Needs adjusted algorithms to be efficient

Martin Bidlingmaier Blockwise Algorithms

Connected Components Labeling
Definitions

Definition
Let X ⊆ Zn, I an image on X .
Let P(I (x), I (y)) be a symmetric predicate defined for each
adjacent pair of coordinates (x , y) in X .
Define an undirected graph G = (X ,E) by setting

(x , y) ∈ E ⇔ x is adjacent to y ∧ P(I (x), I (y)).

A labeling of I according to P is an image J on X such that

∀x , y ∈ X : J(x) = J(y)⇔ x y in G.

Martin Bidlingmaier Blockwise Algorithms

Connected Components Labeling
MapReduce

MapReduce

1. Divide problem into smaller subproblems

2. Map a function on subproblems (possibly in parallel)

3. Reduce results to a global result

MapReduce on ChunkedArrays

1. Image is already stored in separate chunks

2. Map algorithm for MultiArrays on every chunk

3. Reduce subresults to global result

Martin Bidlingmaier Blockwise Algorithms

Connected Components Labeling
MapReduce

MapReduce

1. Divide problem into smaller subproblems

2. Map a function on subproblems (possibly in parallel)

3. Reduce results to a global result

MapReduce on ChunkedArrays

1. Image is already stored in separate chunks

2. Map algorithm for MultiArrays on every chunk

3. Reduce subresults to global result

Martin Bidlingmaier Blockwise Algorithms

Connected Components Labeling
Implementation - Map Stage

Apply map function

I Iterate over chunks with ChunkIterator

I Use labelMultiArray to create a local labeling for each
chunk

I Save number of local labels assigned for each chunk

Martin Bidlingmaier Blockwise Algorithms

Connected Components Labeling
Implementation - Reduce Stage

Goal:
Merge local labels to global labels

Unique global ids for local labels

I Calculate an id offset for each chunk such that
id offset + local label id yields globally unique label ids

Merge labels

I Union-find data structure for global label ids

I Iterate over all adjacent chunks with GridGraph

I Iterate over adjacent pixels in different chunks with
visitBorder

I Merge two pixels’ global labels if they satisfy the predicate

I Replace local labels by global labels (optional)

Martin Bidlingmaier Blockwise Algorithms

Connected Components Labeling
Implementation - Reduce Stage

Goal:
Merge local labels to global labels

Unique global ids for local labels

I Calculate an id offset for each chunk such that
id offset + local label id yields globally unique label ids

Merge labels

I Union-find data structure for global label ids

I Iterate over all adjacent chunks with GridGraph

I Iterate over adjacent pixels in different chunks with
visitBorder

I Merge two pixels’ global labels if they satisfy the predicate

I Replace local labels by global labels (optional)

Martin Bidlingmaier Blockwise Algorithms

Connected Components Labeling
Implementation - Reduce Stage

Goal:
Merge local labels to global labels

Unique global ids for local labels

I Calculate an id offset for each chunk such that
id offset + local label id yields globally unique label ids

Merge labels

I Union-find data structure for global label ids

I Iterate over all adjacent chunks with GridGraph

I Iterate over adjacent pixels in different chunks with
visitBorder

I Merge two pixels’ global labels if they satisfy the predicate

I Replace local labels by global labels (optional)

Martin Bidlingmaier Blockwise Algorithms

Blockwise Labeling
Usage

#include <vigra/blockwise_labeling.hxx >

using namespace vigra;

int main() {

ChunkedArray <4. int >& data = ...

ChunkedArray <4, int >& labels = ...

LabelOptions options;

options.neighborhood(IndirectNeighborhood)

.background (3);

labelMultiArrayBlockwise(data ,

labels , options);

...

}

Martin Bidlingmaier Blockwise Algorithms

Watershed Transform
Definitions

Definition
Let I be a grayscale image on X ⊆ Zn. I can be regarded as a
topographic relief by identifying darkness with height for every
pixel.
A drop of water put on a pixel will flow down the steepest slope
until it stops in a minimum. A watershed labeling according to the
drop of water principle is an image J on X such that

∀x , y ∈ X : J(x) = J(y)⇔ drops of water put on I at positions x and y

come to a halt in the same minimum

Problem: non-lower-complete images

Martin Bidlingmaier Blockwise Algorithms

Watershed Transform
Definitions

Definition
Let I be a grayscale image on X ⊆ Zn. I can be regarded as a
topographic relief by identifying darkness with height for every
pixel.
A drop of water put on a pixel will flow down the steepest slope
until it stops in a minimum. A watershed labeling according to the
drop of water principle is an image J on X such that

∀x , y ∈ X : J(x) = J(y)⇔ drops of water put on I at positions x and y

come to a halt in the same minimum

Problem: non-lower-complete images

Martin Bidlingmaier Blockwise Algorithms

Watershed Transform
Definitions

A watershed labeling can be reduced to a connected components
labeling problem with the predicate

P(x , y)⇔ x is the lowest neighbor of y ∨
y is the lowest neighbor of x ∨
neither x nor y has a strictly lower neighbor

To decide P(x , y), all neighbors of x and y have to be
considered – bad for a blockwise algorithm (pixels on chunk
borders)

Martin Bidlingmaier Blockwise Algorithms

Watershed Transform
Definitions

A watershed labeling can be reduced to a connected components
labeling problem with the predicate

P(x , y)⇔ x is the lowest neighbor of y ∨
y is the lowest neighbor of x ∨
neither x nor y has a strictly lower neighbor

To decide P(x , y), all neighbors of x and y have to be
considered – bad for a blockwise algorithm (pixels on chunk
borders)

Martin Bidlingmaier Blockwise Algorithms

Blockwise Watershed Transform
Implementation

Solution:

I Checkout blocks slightly larger than chunks that overlap
adjacent chunks by one pixel

I Save relative coordinate of lowest neighbor for each pixel in a
temporary array

I Use only temporary array to decide predicate and label
according to it

I Write operations only within the actual chunk size
⇒ parallelizable

Martin Bidlingmaier Blockwise Algorithms

Blockwise Watershed Transform
Usage

#include <vigra/blockwise_watershed.hxx >

using namespace vigra;

int main() {

ChunkedArray <4. int >& data = ...

ChunkedArray <4, int >& labels = ...

unionFindWatershedsBlockwise(data , labels ,

IndirectNeighborhood);

...

}

Martin Bidlingmaier Blockwise Algorithms

Thank you!

Martin Bidlingmaier Blockwise Algorithms

	Introduction
	Connected Components Labeling
	Definitions
	MapReduce
	Implementation
	Usage

	Watershed Transform
	Definitions
	Implementation
	Usage

