
sqlite3 driver manual

A libdbi driver using the SQLite3 embedded
database engine

Markus Hoenicka
mhoenicka@users.sourceforge.net

sqlite3 driver manual: A libdbi driver using the SQLite3 embedded database engine
by Markus Hoenicka

Revision History

Revision $Revision: 1.5 $ $Date: 2005/09/06 06:28:46 $

Table of Contents
Preface..v
1. Introduction...1
2. Installation...2

2.1. Prerequisites ...2
2.2. Build and install the sqlite3 driver..2

3. Driver options..4
4. Peculiarities you should know about ...5

4.1. SQLite3 (mis)features ..5
4.2. sqlite driver misfeatures ...7

iii

List of Tables
4-1. SQL column types supported by the sqlite driver ...5

iv

Preface
libdbi (http://libdbi.sourceforge.net) is a database abstraction layer written in C. It implements a framework that can
utilize separate driver libraries for specific database servers. The libdbi-drivers (http://libdbi-drivers.sourceforge.net)
project provides the drivers necessary to talk to the supported database servers.

This manual provides information about the sqlite3 driver. The manual is intended for programmers who write
applications linked against libdbi and who want their applications to work with the sqlite3 driver.

Questions and comments about the sqlite3 driver should be sent to the libdbi-drivers-devel
(mailto:libdbi-drivers-devel@lists.sourceforge.net) mailing list. Visit the libdbi-drivers-devel list page
(http://lists.sourceforge.net/lists/listinfo/libdbi-drivers-devel) to subscribe and for further information. Questions and
comments about the libdbi library should be sent to the appropriate libdbi mailing list.

The sqlite3 driver is maintained by Markus Hoenicka (mailto:mhoenicka@users.sourceforge.net).

v

Chapter 1. Introduction
SQLite (http://www.sqlite.org) is a smart library that implements an embeddable SQL database engine. No need for
an external database server - an application linked against libsqlite can do it all by itself. Of course there are a few
limitations of this approach compared to "real" SQL database servers, mostly for massively parallel high-throughput
database applications, but on the other hand, installation and administration are a breeze.

SQLite3 is a redesign of SQLite which is incompatible with the older 2.x versions. As the API functions and the
library itself were renamed, SQLite3 also requires a slightly modified libdbi driver. You can have both the sqlite and
the sqlite3 driver installed on your system, but you have to make sure that you access your databases with the driver
that matches the database version. The easiest way to accomplish this is to use different database directories for each
version.

Your application should support the sqlite3 driver if one of the following applies:

• You want to support potential users of your application who don’t have the skills to administer a database server.

• You want to offer the simplest possible installation of your application.

• You want to let users test-drive your application without the need to fiddle with their production database servers.

1

Chapter 2. Installation
This chapter describes the prerequisites and the procedures to build and install the sqlite3 driver from the sources.

2.1. Prerequisites
The following packages have to be installed on your system:

libdbi

This library provides the framework of the database abstraction layer which can utilize the sqlite3 driver to
perform database operations. The download page as well as the mailing lists with bug reports and patches are
accessible at sourceforge.net/projects/libdbi (http://sourceforge.net/projects/libdbi).

sqlite3

This library implements the embedded database engine. Find the most recent release at www.sqlite.org
(http://www.sqlite.org). The current version of the sqlite driver was tested with SQLite3 version 3.0.8 and
should work ok with later releases.

2.2. Build and install the sqlite3 driver
First you have to unpack the libdbi-drivers archive in a suitable directory. Unpacking will create a new subdirectory
libdbi-drivers-X.Y where "X.Y" denotes the version:

$ tar -xzf libdbi-drivers-0.7.2.tar.gz

The libdbi-drivers project consists of several drivers that use a common build system. Therefore you must tell
configure explicitly that you want to build the sqlite3 driver (you can list as many drivers as you want to build):

$ cd libdbi-drivers

$./configure --with-sqlite3

Run ./configure --help to find out about additional options.

Then build the driver with the command:

$ make

Note: Please note that you may have to invoke gmake, the GNU version of make, on some systems.

Then install the driver with the command (you’ll need root permissions to do this):

2

Chapter 2. Installation

$ make install

To test the operation of the newly installed driver, use the command:

$ make check

This command creates and runs a test program that performs a few basic input and output tests. The program will ask
for a database name. This can be any name that is a valid filename on your system. It will also ask for a data
directory. This is the directory that is used to create the test database. Needless to say that you need write access to
that directory. If you accept the default ".", the database will be created in the tests subdirectory.

Note: If for some reason you need to re-create the autoconf/automake-related files, try running ./autogen.sh.
I’ve found out that the current stable autoconf/automake/libtool versions (as found in FreeBSD 4.7 and Debian
3.0) do not cooperate well, so I found it necessary to run the older autoconf 2.13. If necessary, edit autogen.sh
so that it will catch the older autoconf version on your system.

3

Chapter 3. Driver options
Your application has to initialize libdbi drivers by setting some driver options with the dbi_conn_set_option()
and the dbi_conn_set_option_numeric() library functions. The sqlite driver supports the following options:

dbname

The name of the database you want to work with. As a SQLite database corresponds to one file in your
filesystem, dbname can be any legal filename. If the database/file doesn’t exist when you first try to access it,
SQLite will create it on the fly.

It is important to understand that the full path of the database is composed of sqlite3_dbdir and dbname.
Therefore dbname should not contain the full path of a file, but just the name.

sqlite3_dbdir

This is the directory that contains all sqlite databases. Use the full path please.

Note: It is necessary to keep all sqlite databases in one directory to make it possible to list all existing
databases through the libdbi API. However, you are free to open more than one connection simultaneously,
each one using a different setting of sqlite3_dbdir.

sqlite3_timeout

The design of SQLite3 does not allow fully concurrent access by two clients. However, if the timeout is larger
than zero, the second client will wait for the given amount of time for the first client to release its lock, if
necessary. If the timeout is set to zero, the second client will return immediately, indicating a busy status. The
numerical value of this option specifies the timeout in milliseconds.

4

Chapter 4. Peculiarities you should know about
This chapter lists known peculiarities of the sqlite3 driver. This includes SQLite3 features that differ from what you
know from the other database servers supported by libdbi, and it includes features and misfeatures introduced by the
sqlite3 driver. It is the intention of the driver author to reduce the number of misfeatures in future releases if possible.

4.1. SQLite3 (mis)features
As the SQLite3 package is constantly being improved, you should refer to the original documentation about the SQL
features it supports (http://www.sqlite.org/lang.html) and about the SQL features it doesn’t support
(http://www.sqlite.org/omitted.html).

One noticeable difference between SQLite3 and other SQL database engines is that the former uses something called
"manifest typing". The practical difference to the typeless nature of SQLite 2.x is negligible as it still does not
support the rich typing used by most other SQL database engines. In order to satisfy the needs of the strongly typed
retrieval functions of libdbi, the only way out is to declare the column types in a CREATE TABLE statement just as
you would with any other SQL database engine. As an example, the following statement is perfectly fine with
SQLite3, but not with the sqlite3 driver:

CREATE TABLE foo (a,b,c)

However, the following statement is fine with SQLite3, the sqlite3 driver, and just about any other SQL database
engine out there:

CREATE TABLE foo (a INTEGER,b TEXT,c VARCHAR(64))

The following table lists the column types which are positively recognized by the sqlite driver. Essentially all column
types supported by MySQL and PostgreSQL are supported by this driver as well, making it reasonably easy to write
portable SQL code. All other column types are treated as strings.

Table 4-1. SQL column types supported by the sqlite driver

type description
TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB,
BYTEA

String types of unlimited length. Binary data must be
safely encoded, see text.

CHAR(), VARCHAR(), TINYTEXT, TEXT,
MEDIUMTEXT, LONGTEXT

String types of unlimited length. There is no chopping or
padding performed by the database engine.

ENUM String type of unlimited length. In contrast to MySQL,
choosing ENUM over VARCHAR does not save any
storage space.

SET String type of unlimited length. In contrast to MySQL,
the input is not checked against the list of allowed
values.

5

Chapter 4. Peculiarities you should know about

type description
YEAR String type of unlimited length. MySQL stores 2 or 4

digit years as a 1 byte value, whereas the SQLite drivers
stores the string as provided.

TINYINT, INT1, CHAR A 1 byte type used to store one character, a signed
integer between -128 and 127, or an unsigned integer
between 0 and 255.

SMALLINT, INT2 2 byte (short) integer type used to store a signed integer
between -32768 and 32767 or an unsigned integer
between 0 and 65535.

MEDIUMINT 3 byte integer type used to store a signed integer
between -8388608 and 8388607 or an unsigned integer
between 0 and 16777215.

INT, INTEGER, INT4 4 byte (long) integer type used to store a signed integer
between -2147483648 and 2147483647 or an unsigned
integer between 0 and 4294967295.

BIGINT, INT8, INTEGER PRIMARY KEY 8 byte (long long) integer type used to store a signed
integer between -9223372036854775808 and
9223372036854775807 or an unsigned integer between
0 and 18446744073709551615. See below for a
discussion of INTEGER PRIMARY KEY.

DECIMAL, NUMERIC A string type of unlimited length used to store
floating-point numbers of arbitrary precision.

TIMESTAMP, DATETIME A string type of unlimited length used to store date/time
combinations. The required format is ’YYYY-MM-DD
HH:MM:SS’, anything following this pattern is ignored.

DATE A string type of unlimited length used to store a date.
The required format is ’YYYY-MM-DD’, anything
following this pattern is ignored.

TIME A string type of unlimited length used to store a time.
The required format is ’HH:MM:SS’, anything
following this pattern is ignored.

FLOAT, FLOAT4, REAL A 4 byte floating-point number. The range is
-3.402823466E+38 to -1.175494351E-38, 0, and
1.175494351E-38 to 3.402823466E+38. Please note that
MySQL treats REAL as an 8 byte instead of a 4 byte
float like PostgreSQL.

DOUBLE, DOUBLE PRECISION, FLOAT8 An 8 byte floating-point number. The range is
-1.7976931348623157E+308 to
-2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to
1.7976931348623157E+308.

6

Chapter 4. Peculiarities you should know about

Another difference is the lack of access control on the database engine level. Most SQL database servers implement
some mechanisms to restrict who is allowed to fiddle with the databases and who is not. As SQLite3 uses regular
files to store its databases, all available access control is on the filesystem level. There is no SQL interface to this
kind of access control, but chmod and chown are your friends.

4.2. sqlite driver misfeatures
And now we have to discuss how successful the sqlite driver is in squeezing the SQLite idea of a database engine
into the libdbi framework which was shaped after MySQL and PostgreSQL. Keep in mind that the limitations
mentioned here are not intrinsic (except maybe the first one which is beyond our control), that is a sufficient amount
of coding might fix these problems eventually.

• SQLite3 handles auto-increment columns in a fairly non-intuitive way. Only the type INTEGER PRIMARY KEY
auto-increments. As a user of other database engine you might expect the row IDs to be 4-byte integers (they were
in 2.x), but nope: they are in fact 8-byte integers, and therefore equivalent to INT8 or BIGINT of other engines.
This leaves us with the odd "feature" of the sqlite3 driver that INTEGER is a 4-byte integer, whereas INTEGER
PRIMARY KEY is a 8-bit integer type. If this were not the case, auto-incrementing columns would be artificially
limited to the range of 4-byte integers. On the other hand this means that you cannot declare a real 4-byte integer
auto-incrementing column.

Warning
Do not forget to use dbi_result_get_longlong() or dbi_result_get_ulonglong to retrieve values
from columns declared as INTEGER PRIMARY KEY.

• The (essentially) typeless nature of SQLite has some nasty consequences. The sqlite driver takes great care to
reconstruct the type of a field that you request in a query, but this isn’t always successful. Some of the functions
that SQLite supports work both on numeric and text data. The sqlite driver currently cannot deduce the field type
correctly as it would have to check all arguments of each function. Instead the sqlite driver makes a few
assumptions that may be right or wrong in a given case. The affected functions are coalesce(X,Y,...),
max(X), min(X), and count(X).

• The sqlite driver currently assumes that the directory separator of your filesystem is a slash (/). This may be wrong
on your particular system. It is not a problem for Windows systems as long as the sqlite driver is built with the
Cygwin tools (see README.win32).

• Listing tables with the dbi_conn_get_table_list() libdbi function currently returns only permanent tables.
Temporary tables are ignored.

• The sqlite driver assumes that table and field names do not exceed 128 characters in length, including the trailing
\0. I don’t know whether SQLite internally has such a limit or not (both MySQL and PostgreSQL have a lower
limit). The limit can be increased by changing a single #define in the dbd_sqlite.h header file.

• In a few cases, the sqlite driver expects you to type SQL keywords in all lowercase or all uppercase, but not mixed.
This holds true for the ’from’ in a SELECT statement. Type it either as ’from’ or as ’FROM’, but refrain from

7

Chapter 4. Peculiarities you should know about

using ’fRoM’ or other funny mixtures of uppercase and lowercase. Most other database engines treat the keywords
as case-insensitive and would accept all variants.

8

	sqlite3 driver manual
	Table of Contents
	List of Tables
	Preface
	Chapter 1. Introduction
	Chapter 2. Installation
	2.1. Prerequisites
	2.2. Build and install the sqlite3 driver

	Chapter 3. Driver options
	Chapter 4. Peculiarities you should know about
	4.1. SQLite3 (mis)features
	4.2. sqlite driver misfeatures

