
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I.Memo No. 1236 April, 2005

The Iterate Manual

Jonathan Amsterdam

Abstract: This is the manual for version 1.1 of iterate, a powerful iteration macro
for Common Lisp. iterate is similar to loop but provides numerous additional
features, is well integrated with Lisp, and is extensible.

This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory’s artificial
intelligence research is provided in part by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval Research contract N00014-85-K-
0124.

Contents

1 Introduction 3

2 Clauses 4
2.1 Drivers . 4

2.1.1 Numerical Iteration . 5
2.1.2 Sequence Iteration . 5
2.1.3 Generalized Drivers . 7
2.1.4 Generators . 8
2.1.5 Previous Values of Driver Variables 9

2.2 Variable Binding and Setting . 10
2.3 Gathering Clauses . 12

2.3.1 Reductions . 12
2.3.2 Accumulations . 13
2.3.3 Finders . 14
2.3.4 Aggregated Boolean Tests . 15

2.4 Control Flow . 16
2.5 Code Placement . 17

3 Other Features 18
3.1 Multiple Accumulations . 18
3.2 Named Blocks . 18
3.3 Destructuring . 19
3.4 On-line Help . 19
3.5 Parallel Binding and Stepping . 20

4 Types and Declarations 20
4.1 Discussion . 20
4.2 Summary . 23

5 Problems with Code Movement 23

6 Differences Between Iterate and Loop 24

7 Rolling Your Own 25
7.1 Introduction . 25
7.2 Writing Drivers . 28
7.3 Extensibility Aids . 29
7.4 Subtleties . 30

8 Non-portable Extensions to Iterate (Contribs) 31
8.1 An SQL query driver for iterate . 31

1

9 Obtaining Iterate 31

2

1 INTRODUCTION 3

1 Introduction

This manual describes iterate, a powerful iteration facility for Common Lisp.
iterate provides abstractions for many common iteration patterns and allows for
the definition of additional patterns. iterate is a macro that expands into ordinary
Lisp at compile-time, so it is more efficient than higher-order functions like map and
reduce. While it is similar to loop, iterate offers a more Lisp-like syntax and
enhanced extensibility. (For a more complete comparison of iterate with other
iteration constructs, see MIT AI Lab Working Paper No. 324, Don’t Loop, Iterate.)

An iterate form consists of the symbol iter1 followed by one or more forms,
some of which may be iterate clauses. Here is a simple example of iterate which
collects the numbers from 1 to 10 into a list, and returns the list. The return value
is shown following the arrow.

(iter (for i from 1 to 10)

(collect i)) ⇒ (1 2 3 4 5 6 7 8 9 10)

This form contains two clauses: a for clause that steps the variable i over the
integers from 1 to 10, and a collect clause that accumulates its argument into a list.
With a few exceptions, all iterate clauses have the same format: alternating symbols
(called keywords) and expressions (called arguments). The syntax and terminology
are those of Common Lisp’s keyword lambda lists. One difference is that iterate’s
keywords do not have to begin with a colon—though they may, except for the first
symbol of a clause. So you can also write (for i :from 1 :to 10) if you prefer.

Any Lisp form can appear in the body of an iterate, where it will have its usual
meaning. iterate walks the entire body, expanding macros, and recognizing clauses
at any level. This example collects all the odd numbers in a list:

(iter (for el in list)

(if (and (numberp el) (oddp el))

(collect el)))

There are clauses for iterating over numbers, lists, arrays and other objects, and
for collecting, summing, counting, maximizing and other useful operations. iterate
also supports the creation of new variable bindings, stepping over multiple sequences
at once, destructuring, and compiler declarations of variable types. The following
example illustrates some of these features:

(iter (for (key . item) in alist)

(for i from 0)

(declare (fixnum i))

(collect (cons i key)))

1You can also use iterate, but iter is preferred because it avoids potential conflicts with possible
future additions to Common Lisp, and because it saves horizontal space when writing code.

2 CLAUSES 4

This loop takes the keys of an alist and returns a new alist associating the keys
with their positions in the original list. The compiler declaration for i will appear in
the generated code in the appropriate place.

2 Clauses

Most of iterate’s clauses will be familiar to loop programmers. (loop is an
iteration macro that has been incorporated into Common Lisp. Seen Guy Steele’s
Common Lisp, 2nd Edition.) In nearly all cases they behave the same as their loop
counterparts, so a loop user can switch to iterate with little pain (and much gain).

All clauses with the standard keyword-argument syntax consist of two parts: a
required part, containing keywords that must be present and in the right order; and an
optional part, containing keywords that may be omitted and, if present, may occur in
any order. In the descriptions below, the parts are separated by the Lisp lambda-list
keyword &optional.

2.1 Drivers

An iteration-driving clause conceptually causes the iteration to go forward. Driver
clauses in iterate allow iteration over numbers, lists, vectors, hashtables, packages,
files and streams. Iteration-driving clauses must appear at the top level of an iterate

form; they cannot be nested inside another clause. The driver variable is updated at
the point where the driver clause occurs. Before the clause is executed for the first
time, the value of the variable is undefined.

Multiple drivers may appear in a single iterate form, in which case all of the
driver variables are updated each time through the loop, in the order in which the
clauses appear. The first driver to terminate will terminate the entire loop.

In all cases, the value of the driver variable on exit from the loop, including within
the epilogue code (see the finally clause), is undefined.

All the parameters of a driver clause are evaluated once, before the loop begins.
Hence it is not possible to change the bounds or other properties of an iteration by
side-effect from within the loop.

With one exception, driver clauses begin with the word for (or the synonym as)
and mention an iteration variable, which is given a binding within the iterate form.
The exception is repeat, which just executes a loop a specified number of times:

repeat n

Repeats the loop n times. For example:

(iter (repeat 100)

(print "I will not talk in class."))

If n ≤ 0, the loop will never be executed. If n is not an integer, the actual
number of executions will be dne.

2 CLAUSES 5

2.1.1 Numerical Iteration

for var &sequence

The general form for iterating over a sequence of numbers requires a variable
and, optionally, one or more keywords that provide the bounds and step size
of the iteration. The &sequence lambda-list keyword is a shorthand for these
sequence keywords. They are: from, upfrom, downfrom, to, downto, above,
below and by. from provides the starting value for var and defaults to zero.
to provides a final value and implies that the successive values of var will be
increasing; downto implies that they will be decreasing. The loop terminates
when var passes the final value (i.e. becomes smaller or larger than it, depend-
ing on the direction of iteration); in other words, the loop body will never be
executed for values of var past the final value. below and above are similar
to to and downto, except that the loop terminates when var equals or passes
the final value.

If no final value is specified, the variable will be stepped forever. Using from
or upfrom will result in increasing values, while downfrom will give decreasing
values.

On each iteration, var is incremented or decremented by the value of the
sequence keyword by, which defaults to 1. It should always be a positive
number, even for downward iterations.

In the following examples, the sequence of numbers generated is shown
next to the clause.

(for i upfrom 0) ⇒ 0 1 2 ...

(for i from 5) ⇒ 5 6 7 ... ; either from or upfrom is okay

(for i downfrom 0) ⇒ 0 -1 -2 ...

(for i from 1 to 3) ⇒ 1 2 3

(for i from 1 below 3) ⇒ 1 2

(for i from 1 to 3 by 2) ⇒ 1 3

(for i from 1 below 3 by 2) ⇒ 1

(for i from 5 downto 3) ⇒ 5 4 3

2.1.2 Sequence Iteration

There are a number of clauses for iterating over sequences. In all of them, the
argument following for may be a list instead of a symbol, in which case destructuring
is performed. See section 3.3.

for var in list &optional by step-function

var is set to successive elements of list. step-function, which defaults to cdr,
is used to obtain the next sublist.

2 CLAUSES 6

for var on list &optional by step-function

var is set to successive sublists of list. step-function (default cdr) is used as
in for...in.

These two clauses use atom to test for the end of a list. Hence, given a list
whose final cdr is not nil, they will silently ignore the last cdr. Other choices are
endp, which would signal an error, and null, which would probably result in an error
somewhere else. If you wish to use an end-test other than atom, set the variable
iterate::*list-end-test* to the name of the desired function.

for var in-vector vector &sequence

var takes on successive elements from vector. The vector’s fill-pointer is ob-
served. Here and in subsequent clauses, the &sequence keywords include
with-index, which takes a symbol as argument and uses it for the index vari-
able instead of an internally generated symbol. The other &sequence keywords
behave as in numerical iteration, except that the default iteration bounds are
the bounds of the vector. E.g. in (for i in-vector v downto 3), i will
start off being bound to the last element in v, and will be set to preceding
elements down to and including the element with index 3.

for var in-sequence seq &sequence

This uses Common Lisp’s generalized sequence functions, elt and length, to
obtain elements and determine the length of seq. Hence it will work for any
sequence, including lists, and will observe the fill-pointers of vectors.

for var in-string string &sequence

var is set to successive characters of string.

for var index-of-vector vector &sequence

for var index-of-sequence sequence &sequence

for var index-of-string string &sequence

var is set to successive indices of the sequence. These clauses avoid the over-
head of accessing the sequence elements for those applications where they do
not need to be examined, or are examined rarely. They admit all the optional
keywords of the other sequence drivers except the (redundant) with-index

keyword.

for (key value) in-hashtable table

key and value, which must appear as shown in a list and may be destruc-
turing templates, are set to the keys and values of table. If key is nil, then
the hashtable’s keys will be ignored; similarly for value. The order in which
elements of table will be retrieved is unpredictable.

2 CLAUSES 7

for var in-package package &optional external-only ext

Iterates over all the symbols in package, or over only the external symbols if
ext is specified and non-nil. The same symbol may appear more than once.

for var in-file name &optional using reader

Opens the file name (which may be a string or pathname) for input, and
iterates over its contents. reader defaults to read, so by default var will be
bound to the successive forms in the file. The iterate body is wrapped in an
unwind-protect to ensure that the file is closed no matter how the iterate is
exited.

for var in-stream stream &optional using reader

Like for...in-file, except that stream should be an existing stream object
that supports input operations.

2.1.3 Generalized Drivers

These are primarily useful for writing drivers that can also be used as generators
(see section 2.1.4, below).

for var next expr

var is set to expr each time through the loop. Destructuring is performed.
When the clause is used as a generator, expr is the code that is executed when
(next var) is encountered (see section 2.1.4, below). expr should compute
the first value for var , as well as all subsequent values, and is responsible
for terminating the loop. For compatibility with future versions of iterate,
this termination should be done with terminate, which can be considered a
synonym for finish (see section 2.4).

As an example, the following clauses are equivalent to (for i from 1 to

10):

(initially (setq i 0))

(for i next (if (> i 10) (terminate) (incf i)))

for var do-next form

form is evaluated each time through the loop. Its value is not set to var ; that
is form’s job. var is only present so that iterate knows it is a driver variable.
(for var next expr) is equivalent to (for var do-next (dsetq var expr)).
(See section 3.3 for an explanation of dsetq.)

2 CLAUSES 8

2.1.4 Generators

In all of the above clauses, the driver variable is updated on each iteration. Some-
times it is desirable to have greater control over updating. For instance, consider
the problem of associating numbers, in increasing order and with no gaps, with the
non-nil elements of a list. One obvious first pass at writing this is:

(iter (for el in list)

(for i upfrom 1)

(if el (collect (cons el i))))

But on the list (a b nil c) this produces ((a . 1) (b . 2) (c . 4)) in-
stead of the desired ((a . 1) (b . 2) (c . 3)). The problem is that i is
incremented each time through the loop, even when el is nil.

The problem could be solved elegantly if we could step i only when we wished
to. This can be accomplished for any iterate driver by writing generate (or its
synonym generating) instead of for. Doing so produces a generator—a driver whose
values are yielded explicitly. To obtain the next value of a generator variable v , write
(next v). The value of a next form is the next value of v , as determined by its
associated driver clause. next also has the side-effect of updating v to that value. If
there is no next value, next will terminate the loop, just as with a normal driver.

Using generators, we can now write our example like this:

(iter (for el in list)

(generate i upfrom 1)

(if el (collect (cons el (next i)))))

Now i is updated only when (next i) is executed, and this occurs only when el

is non-nil.
To better understand the relationship between ordinary drivers and generators,

observe that we can rewrite an ordinary driver using its generator form immediately
followed by next, as this example shows:

(iter (generating i from 1 to 10)

(next i)

...)

Provided that the loop body contains no (next i) forms, this will behave just as
if we had written (for i from 1 to 10).

We can still refer to a driver variable v without using next; in this case, its value
is that given to it by the last evaluation of (next v). Before (next v) has been
called the first time, the value of v is undefined.

2 CLAUSES 9

This semantics is more flexible than one in which v begins the loop bound to its
first value and calls of next supply subsequent values, because it means the loop will
not terminate too soon if the generator’s sequence is empty. For instance, consider
the following code, which tags non-nil elements of a list using a list of tags, and also
counts the null elements. (We assume there are at least as many tags as non-nil
elements.)

(let* ((counter 0)

(tagged-list (iter (for el in list)

(generating tag in tag-list)

(if (null el)

(incf counter)

(collect (cons el (next tag)))))))

...)

It may be that there are just as many tags as non-null elements of list. If all
the elements of list are null, we still want the counting to proceed, even though
tag-list is nil. If tag had to be assigned its first value before the loop begins, we
would have had to terminate the loop before the first iteration, since when tag-list

is nil, tag has no first value. With the existing semantics, however, (next tag) will
never execute, so the iteration will cover all the elements of list.

When the “variable” of a driver clause is actually a destructuring template con-
taining several variables, all the variables are eligible for use with next. As before,
(next v) evaluates to v’s next value; but the effect is to update all of the template’s
variables. For instance, the following code will return the list (a 2 c).

(iter (generating (key . item) in ’((a . 1) (b . 2) (c . 3)))

(collect (next key))

(collect (next item)))

Only driver clauses with variables can be made into generators. This includes
all clauses mentioned so far except for repeat. It does not include for...previous,
for...=, for...initially...then or for...first...then (see below).

2.1.5 Previous Values of Driver Variables

Often one would like to access the value of a variable on a previous iteration.
iterate provides a special clause for accomplishing this.

for pvar previous var &optional initially init back n

Sets pvar to the previous value of var, which should be a driver variable, a
variable from another for...previous clause, or a variable established by a
for...=, for...initially...then or for...first...then clause (see section 2.2).
Initially, pvar is given the value init (which defaults to nil). The init expres-
sion will be moved outside the loop body, so it should not depend on anything

2 CLAUSES 10

computed within the loop. pvar retains the value of init until var is set to its
second value, at which point pvar is set to var’s first value; and so on.

The argument n to back must be a constant, positive integer, and defaults
to 1. It determines how many iterations back pvar should track var . For
example, when n is 2, then pvar will be assigned var’s first value when var is
set to its third value.

A for...previous clause may occur after or before its associated driver
clause. for...previous works with generators as well as ordinary drivers.

Example:

(iter (for el in ’(1 2 3 4))

(for p-el previous el)

(for pp-el previous p-el initially 0)

(collect pp-el))

This evaluates to (0 0 1 2). It could have been written more economically
as

(iter (for el in ’(1 2 3 4))

(for pp-el previous el back 2 initially 0)

(collect pp-el))

2.2 Variable Binding and Setting

Several clauses exist for establishing new variable bindings or for setting variables
in the loop. They all support destructuring.

with var &optional = value

Causes var to be bound to value before the loop body is entered. If value is
not supplied, var assumes a default binding, which will be nil in the absence
of declarations. Also, if value is not supplied, no destructuring is performed;
instead, var may be a list of symbols, all of which are given default bindings.
If value is supplied, var is bound to it, with destructuring.

Because with creates bindings whose scope includes the entire iterate

form, it is good style to put all with clauses at the beginning.
Successive occurrences of with result in sequential bindings (as with let*).

There is no way to obtain parallel bindings; see section 3.5 for a rationale.

for var = expr

On each iteration, expr is evaluated and var is set to its value.
This clause may appear to do the same thing as for...next. In fact, they are

quite different. for...= provides only three services: it sets up a binding for var ,
sets it to expr on each iteration, and makes it possible to use for...previous

2 CLAUSES 11

with var . for...next provides these services in addition to the ability to turn
the driver into a generator.

for var initially init-expr then then-expr

Before the loop begins, var is set to init-expr; on all iterations after the first
it is set to then-expr. This clause must occur at top-level. init-expr will be
moved outside the loop body and then-expr will be moved to the end of the
loop body, so they are subject to code motion problems (see section 5).

This clause may appear to be similar to for...next, but in fact they differ
significantly. for...initially...then is typically used to give var its first value
before the loop begins, and subsequent values on following iterations. This is
incompatible with generators, whose first value and subsequent values must all
be computed by (next var). Also, the update of var in for...initially...then
does not occur at the location of the clause. Use for...initially...then for
one-shot computations where its idiom is more convenient, but use for...next
for extending iterate with new drivers (see section 7).

for var first first-expr then then-expr

The first time through the loop, var is set to first-expr; on subsequent itera-
tions, it is set to then-expr. This differs from for...initially in that var is
set to first-expr inside the loop body, so first-expr may depend on the results
of other clauses. For instance,

(iter (for num in list)

(for i first num then (1+ i))

...)

will set i to the first element of list on the first iteration, whereas

(iter (for num in list)

(for i initially num then (1+ i))

...)

is probably erroneous; i will be bound to num’s default binding (usually nil)
for the first iteration.

Compatibility note: loop’s for...= works like iterate’s, but loop used the syntax
for...=...then to mean for...initially...then. It was felt that these two operations were
sufficiently different to warrant different keywords.

Also, the for in the above three clauses is misleading, since none is true driver (e.g.
none has a corresponding generate form). setting would have been a better choice, but
for was used to retain some compatibility with loop.

2 CLAUSES 12

2.3 Gathering Clauses

Many of iterate’s clauses accumulate values into a variable, or set a variable
under certain conditions. At the end of the loop, this variable contains the desired
result. All these clauses have an optional into keyword, whose argument should
be a symbol. If the into keyword is not supplied, the accumulation variable will
be internally generated and its value will be returned at the end of the loop; if a
variable is specified, that variable is used for the accumulation, and is not returned
as a result—it is up to the user to return it explicitly, in the loop’s epilogue code
(see finally). It is safe to examine the accumulation variable during the loop, but
it should not be modified.

These clauses all begin with a verb. When the verb does not conflict with an
existing Common Lisp function, then it may be used in either its infinitival or present-
participle form (e.g. sum, summing). However, when there is a conflict with Common
Lisp, only the present-participle form may be used (e.g. unioning). This is to prevent
iterate clauses from clashing with Common Lisp functions.

2.3.1 Reductions

Reduction is an extremely common iteration pattern in which the results of suc-
cessive applications of a binary operation are accumulated. For example, a loop that
computes the sum of the elements of a list is performing a reduction with the addition
operation. This could be written in Common Lisp as (reduce #’+ list) or with
iterate as

(iter (for el in list)

(sum el))

sum expr &optional into var

Each time through the loop, expr is evaluated and added to a variable, which
is bound initially to zero. If expr has a type, it is not used as the type of the
sum variable, which is always number. To get the result variable to be of a
more specific type, use an explicit variable, as in

(iter (for el in number-list)

(sum el into x)

(declare (fixnum x))

(finally (return x)))

multiply expr &optional into var

Like sum, but the initial value of the result variable is 1, and the variable is
updated by multiplying expr into it.

2 CLAUSES 13

counting expr &optional into var

expr is evaluated on each iteration. If it is non-nil, the accumulation variable,
initially zero, is incremented.

maximize expr &optional into var
minimize expr &optional into var

expr is evaluated on each iteration and its extremum (maximum or minimum)
is stored in the accumulation variable. If expr is never evaluated, then the
result is nil (if the accumulation variable is untyped) or 0 (if it has a numeric
type).

reducing expr by func &optional initial-value init-val into var

This is a general way to perform reductions. func should be a function of two
arguments, the first of which will be the value computed so far and the second
of which will be the value of expr . It should return the new value. reducing

is roughly equivalent to the Common Lisp (reduce func list), where list is
a list of the successive values of expr . Because this list need not be explicitly
constructed, the iterate clause may be more efficient than the Common Lisp
function.

If the reducing clause is never executed, the result is undefined.
It is not necessary to provide an initial value, but better code can be

generated if one is supplied. Regardless of its location in the iterate body,
init-val will be evaluated before the loop is entered, so it should not depend
on any value computed inside the iterate form.

2.3.2 Accumulations

All the predefined accumulation clauses add values to a sequence. If the sequence
is a list, they all have the property that the partial list is kept in the correct order
and available for inspection at any point in the loop.

collect expr &optional into var at place result-type type

Produces a sequence of the values of expr on each iteration. place indicates
where the next value of expr is added to the list and may be one of the symbols
start, beginning (a synonym for start) or end. The symbol may be quoted,
but need not be. The default is end. For example,

(iter (for i from 1 to 5)

(collect i))

produces (1 2 3 4 5), whereas

(iter (for i from 1 to 5)

(collect i at beginning))

2 CLAUSES 14

produces (5 4 3 2 1) (and is likely to be faster in most Common Lisp im-
plementations).

If type is provided, it should be a subtype of sequence. The default is
list. Specifying a type other than list will result in collect returning a
sequence of that type. However, the type of the sequence being constructed
when inside the loop body is undefined when a non-list type is specified. (As
with place, quoting type is optional.)

adjoining expr &optional into var test test at place result-type type

Like collect, but only adds the value of expr if it is not already present. test,
which defaults to #’eql, is the test to be used with member.

appending expr &optional into var at place
nconcing expr &optional into var at place
unioning expr &optional into var test test at place
nunioning expr &optional into var test test at place

These are like collect, but behave like the Common Lisp functions append,
nconc, union or nunion. As in Common Lisp, they work only on lists. Also
as in Common Lisp, unioning and nunioning assume that the value of expr
contains no duplicates.

accumulate expr by func &optional initial-value init-val into var

This is a general-purpose accumulation clause. func should be a function of two
arguments, the value of expr and the value accumulated so far in the iteration,
and it should return the updated value. If no initial value is supplied, nil is
used.

The differences between accumulate and reducing are slight. One differ-
ence is that the functions take their arguments in a different order. Another
is that in the absence of init-val , accumulate will use nil, whereas reducing
will generate different code that avoids any dependence on the initial value.
The reason for having both clauses is that one usually thinks of reductions
(like sum) and accumulations (like collect) as different beasts.

2.3.3 Finders

A finder is a clause whose value is an expression that meets some condition.

finding expr such-that test &optional into var on-failure failure-value

If test (which is an expression) ever evaluates to non-nil, the loop is termi-
nated, the epilogue code is run and the value of expr is returned. Otherwise,
nil (or failure-value, if provided) is returned. If var is provided, it will have
either the non-nil value of expr or failure-value when the epilogue code is run.

2 CLAUSES 15

As a special case, if the test expression is a sharp-quoted function, then
it is applied to expr instead of being simply evaluated. E.g. (finding x

such-that #’evenp) is equivalent to (finding x such-that (evenp x)).
On-failure is a misnomer. Because it is always evaluated, it behaves

more like the default third argument to the gethash function. As a re-
sult, on-failure (error "Not found") makes no sense. Instead, the clauses
leave or thereis can be used in conjunction with finally as follows:

(iter (for x in ’(1 2 3))

(if (evenp x) (leave x))

(finally (error "not found")))

This clause may appear multiple times when all defaults are identical. It
can also be used together with either always/never or thereis if their defaults
match. More specifically, on-failure nil is compatible with thereis, while
on-failure t is compatible with always and never clauses.

(iter (for i in ’(7 -4 2 -3))

(if (plusp i)

(finding i such-that (evenp i))

(finding (- i) such-that (oddp i))))

finding expr maximizing m-expr &optional into var
finding expr minimizing m-expr &optional into var

Computes the extremum (maximum or minimum) value of m-expr over all
iterations, and returns the value of expr corresponding to the extremum. expr
is evaluated inside the loop at the time the new extremum is established. If m-
expr is never evaluated (due to, for example, being embedded in a conditional
clause), then the returned value depends on the type, if any, of expr (or var,
if one is supplied). If there is no type, the returned value will be nil; if the
type is numeric, the returned value will be zero.

For these two clauses, var may be a list of two symbols; in that case, the
first is used to record expr and the second, m-expr.

As with finding...such-that, if m-expr is a sharp-quoted function, then
it is called on expr instead of being evaluated.

2.3.4 Aggregated Boolean Tests

always expr

If expr ever evaluates to nil, then nil is immediately returned; the epilogue
code is not executed. If expr never evaluates to nil, the epilogue code is
executed and the last value of expr (or t if expr was never evaluated) is
returned (whereas loop would constantly return t).

2 CLAUSES 16

never expr

Like (always (not expr)), except it does not influence the last value returned
by a possible other always clause. That is,

(iter (repeat 2)

(always 2)

(never nil)) ⇒ 2 ; not t

thereis expr

If expr is ever non-nil, its value is immediately returned without running
epilogue code. Otherwise, the epilogue code is performed and nil is returned.
This clause cannot be used together with always or never, because their de-
faults are opposed (similarly, (loop always 3 thereis nil) refuses to com-
pile in some implementations of loop).

2.4 Control Flow

Several clauses can be used to alter the usual flow of control in a loop.
Note: the clauses of this and subsequent sections don’t adhere to iterate’s usual

syntax, but instead use standard Common Lisp syntax. Hence the format for de-
scribing syntax subsequently is like the standard format used in the Common Lisp
manual, not like the descriptions of clauses above.

finish

Stops the loop and runs the epilogue code.

leave &optional value

Immediately returns value (default nil) from the current iterate form, skip-
ping the epilogue code. Equivalent to using return-from.

next-iteration

Skips the remainder of the loop body and begins the next iteration of the loop.

while expr

If expr ever evaluates to nil, the loop is terminated and the epilogue code
executed. Equivalent to (if (not expr) (finish)).

until expr

Equivalent to (if expr (finish)).

2 CLAUSES 17

if-first-time then &optional else

If this clause is being executed for the first time in this invocation of the
iterate form, then the then code is evaluated; otherwise the else code is
evaluated.

(for var first expr1 then expr2) is almost equivalent to

(if-first-time (dsetq var expr1)
(dsetq var expr2))

The only difference is that the for version makes var available for use with
for...previous.

2.5 Code Placement

When fine control is desired over where code appears in a loop generated by
iterate, the following special clauses may be useful. They are all subject to code-
motion problems (see section 5).

initially &rest forms

The lisp forms are placed in the prologue section of the loop, where they are
executed once, before the loop body is entered.

after-each &rest forms

The forms are placed at the end of the loop body, where they are executed
after each iteration. Unlike the other clauses in this section, forms may contain
iterate clauses.

else &rest forms

The lisp forms are placed in the epilogue section of the loop, where they are
executed if this else clause is never met during execution of the loop and the
loop terminates normally.

finally &rest forms

The lisp forms are placed in the epilogue section of the loop, where they are
executed after the loop has terminated normally.

finally-protected &rest forms

The lisp forms are placed in the second form of an unwind-protect outside the
loop. They are always executed after the loop has terminated, regardless of
how the termination occurred.

3 OTHER FEATURES 18

3 Other Features

3.1 Multiple Accumulations

It is permitted to have more than one clause accumulate into the same variable,
as in the following:

(iter (for i from 1 to 10)

(collect i into nums)

(collect (sqrt i) into nums)

(finally (return nums)))

Clauses can only accumulate into the same variable if they are compatible.
collect, adjoining, appending, nconcing, unioning and nunioning are compati-
ble with each other; sum, multiply and counting are compatible; always and never

are compatible; finding ...such-that is compatible with either thereis or always

and never when their defaults match; and maximize and minimize clauses are com-
patible only with other maximize and minimize clauses, respectively.

3.2 Named Blocks

Like Common Lisp blocks, iterate forms can be given names. The name should
be a single symbol, and it must be the first form in the iterate. The generated code
behaves exactly like a named block; in particular, (return-from name) can be used
to exit it:

(iter fred

(for i from 1 to 10)

(iter barney

(for j from i to 10)

(if (> (* i j) 17)

(return-from fred j))))

An iterate form that is not given a name is implicitly named nil.
Sometimes one would like to write an expression in an inner iterate form, but

have it processed by an outer iterate form. This is possible with the in clause.

in name &rest forms

Evaluates forms as if they were part of the iterate form named name. In
other words, iterate clauses are processed by the iterate form named name,
and not by any iterate forms that occur inside name.

As an example, consider the problem of collecting a list of the elements in
a two-dimensional array. The naive solution,

(iter (for i below (array-dimension ar 0))

(iter (for j below (array-dimension ar 1))

3 OTHER FEATURES 19

(collect (aref ar i j))))

is wrong because the list created by the inner iterate is simply ignored by
the outer one. But using in we can write:

(iter outer (for i below (array-dimension ar 0))

(iter (for j below (array-dimension ar 1))

(in outer (collect (aref ar i j)))))

which has the desired result.

3.3 Destructuring

In many places within iterate clauses where a variable is expected, a list can be
written instead. In these cases, the value to be assigned is destructured according to
the pattern described by the list. As a simple example, the clause

(for (key . item) in alist)

will result in key being set to the car of each element in alist, and item being set
to the cdr. The pattern list may be nested to arbitrary depth, and (as the example
shows) need not be terminated with nil; the only requirement is that each leaf be a
bindable symbol (or nil, in which case no binding is generated for that piece of the
structure).

Sometimes, you might like to do the equivalent of a multiple-value-setq in a
clause. This “multiple-value destructuring” can be expressed by writing
(values pat1 pat2 . . .) for a destructuring pattern, as in

(for (values (a . b) c d) = (three-valued-function ...))

Note that the pati can themselves be destructuring patterns (though not multiple-
value destructuring patterns). You can’t do multiple-value destructuring in a with

clause; instead wrap the whole iterate form in a multiple-value-bind.

Rationale: There are subtle interactions between variable declarations and evaluation or-
der that make the correct implementation of multiple-value destructuring in a with some-
what tricky.

The destructuring feature of iterate is available as a separate mechanism, using
the dsetq macro:

dsetq template expr [Macro]

Performs destructuring of expr using template. May be used outside of an
iterate form. Yields the primary value of expr .

3.4 On-line Help

There is a limited facility for on-line help, in the form of the
display-iterate-clauses function.

4 TYPES AND DECLARATIONS 20

display-iterate-clauses &optional clause-spec [Function]

Displays a list of iterate clauses. If clause-spec is not provided, all clauses
are shown; if it is a symbol, all clauses beginning with that symbol are shown;
and if it is a list of symbols, all clauses for which clause-spec is a prefix are
shown.

3.5 Parallel Binding and Stepping

The parallel binding and stepping of variables is a feature that iterate does not
have. This section attempts to provide a rationale.

We say that two variables are bound in parallel if neither binding shadows the
other. This is the usual semantics of let (as opposed to let*). Similarly, we can say
that iteration variables are stepped in parallel if neither variable is updated before
the other, conceptually speaking; in other words, if the code to update each variable
can reference the old values of both variables.

loop allows parallel binding of variables and parallel stepping of driver variables.
My view is that if you are depending on the serial/parallel distinction, you are doing
something obscure. If you need to bind variables in parallel using with, then you must
be using a variable name that shadows a name in the existing lexical environment.
Don’t do that. The most common use for parallel stepping is to track the values of
variables on the previous iteration, but in fact this does not require parallel stepping
at all; the following will work:

(iter (for current in list)

(for prev previous current)

...)

4 Types and Declarations

4.1 Discussion

Sometimes efficiency dictates that the types of variables be declared. This type
information needs to be communicated to iterate so it can bind variables to appro-
priate values. Furthermore, iterate must often generate internal variables invisible
to the user; there needs to be a way for these to be declared.

As an example, consider this code, which will return the number of odd elements
in number-list:

(iter (for el in number-list)

(count (oddp el)))

In processing this form, iterate will create an internal variable, let us call it
list17, to hold the successive cdrs of number-list, and will bind the variable to
number-list. It will also generate a default binding for el; only inside the body of

4 TYPES AND DECLARATIONS 21

the loop will el be set to the car of list17. Finally, iterate will generate a variable,
call it result, to hold the result of the count, and will bind it to zero.

When dealing with type declarations, iterate observes one simple rule: it will
never generate a declaration unless requested to do so. The reason is that such dec-
larations might mask errors in compiled code by avoiding error-checks; the resulting
problems would be doubly hard to track down because the declarations would be
hidden from the programmer. Of course, a compiler might omit error-checks even
in the absence of declarations, though this behavior can usually be avoided, e.g. by
saying (declaim (optimize (safety 3))).

So, the above iterate form will generate code with no declarations. But say we
wish to declare the types of el and the internal variables list17 and result. How
is this done?

Declaring the type of el is easy, since the programmer knows the variable’s name:

(iter (for el in number-list)

(declare (fixnum el))

(counting (oddp el)))

iterate can read variable type declarations like this one. Before processing any
clauses, it scans the entire top-level form for type declarations and records the types,
so that variable bindings can be performed correctly. In this case, el will be bound to
zero instead of nil. Also, iterate collects all the top-level declarations and puts them
at the begining of the generated code, so it is not necessary to place all declarations
at the beginning of an iterate form; instead, they can be written near the variables
whose types they declare.

Since iterate is not part of the compiler, it will not know about declarations that
occur outside an iterate form; these declarations must be repeated inside the form.

Here is another way we could have declared the type of el:

(iter (for (the fixnum el) in number-list)

(counting (oddp el)))

iterate extends the Common Lisp the form to apply to variables as well as value-
producing forms; anywhere a variable is allowed—in a with clause, as the iteration
variable in a driver clause, as the into argument of an accumulation clause, even
inside a destructuring template—you can write (the type symbol) instead.

There is one crucial difference between using a the form and actually declaring
the variable: explicit declarations are always placed in the generated code, but type
information from a the form is not turned into an actual declaration unless you tell
iterate to do so using iterate:declare-variables. See below.

Declaring the types of internal variables is harder than declaring the types of
explicitly mentioned variables, since their names are unknown. You do it by declaring
iterate:declare-variables somewhere inside the top level of the iterate form.
(This will also generate declarations for variables declared using the.) iterate does

4 TYPES AND DECLARATIONS 22

not provide much selectivity here: it’s all or none. And unfortunately, since iterate

is not privy to compiler information but instead reads declarations itself, it will not
hear if you (declaim (iterate:declare-variables)). Instead, set the variable
iterate::*always-declare-variables* to t at compile-time, using eval-when.

To determine the appropriate types for internal variables, iterate uses three
sources of information:

• Often, the particular clause dictates a certain type for a variable; iterate

will use this information when available. In the current example, the variable
list17 will be given the type list, since that is the only type that makes sense;
and the variable result will be given the type fixnum, on the assumption that
you will not be counting high enough to need bignums. You can override this
assumption only by using and explicitly declaring a variable:

(iter (declare (iterate:declare-variables))

(for el in number-list)

(count (oddp el) into my-result)

(declare (integer my-result))

(finally (return my-result)))

Other examples of the type assumptions that iterate makes are: type list for
into variables of collection clauses; type list for expressions that are to be de-
structured; type vector for the variable holding the vector in a for...in-vector
clause, and similarly for string and the for...in-string clause; and
the implementation-dependent type (type-of array-dimension-limit) for
the index and limit variables generated by sequence iteration drivers like
for...in-vector and for...in-string (but not for...in-sequence, because it
may be used to iterate over a list).

• Sometimes, iterate will examine expressions and try to determine their types
in a simple-minded way. If the expression is self-evaluating (like a number, for
instance), iterate knows that the expression’s type is the same as the type of
the value it denotes, so it can use that type. If the expression is of the form
(the type expr), iterate is smart enough to extract type and use it. However,
the current version of iterate does not examine declarations of function result
types or do any type inference. It will not determine, for example, that the type
of (+ 3 4) is fixnum, or even number.

• In some cases, the type of an internal variable should match the type of some
other variable. For instance, iterate generates an internal variable for (f x) in
the clause (for i from 1 to (f x)), and in the absence of other information
will give it the same type as i. If, however, the expression had been written
(the fixnum (f x)), then iterate would have given the internal variable the

5 PROBLEMS WITH CODE MOVEMENT 23

type fixnum regardless of i’s type. The type incompatibility errors that could
arise in this situation are not checked for.

Note that if you do declare iterate:declare-variables, then iterate may
declare user variables as well as internal ones if they do not already have declarations,
though only for variables that it binds. For instance, in this code:

(iter (declare (iterate:declare-variables))

(for i from 1 to 10)

(collect i into var))

the variable var will be declared to be of type list.

4.2 Summary

iterate understands standard Common Lisp variable type declarations that occur
within an iterate form and will pass them through to the generated code. If the
declaration (iterate:declare-variables) appears at the top level of an iterate

form, or if iterate::*always-declare-variables* is non-nil, then iterate will
use the type information gleaned from user declarations, self-evaluating expressions
and the expressions, combined with reasonable assumptions, to determine variable
types and declare them.

5 Problems with Code Movement

Some iterate clauses, or parts of clauses, result in code being moved from the
location of the clause to other parts of the loop. Drivers behave this way, as do code-
placement clauses like initially and finally. When using these clauses, there is a
danger of writing an expression that makes sense in its apparent location but will be
invalid or have a different meaning in another location. For example:

(iter (for i from 1 to 10)

(let ((x 3))

(initially (setq x 4))))

While it may appear that the x of (initially (setq x 4)) is the same as the
x of (let ((x 3)) ..., in fact they are not: initially moves its code outside the
loop body, so x would refer to a global variable. Here is another example of the same
problem:

(iter (for i from 1 to 10)

(let ((x 3))

(collect i into x)))

If this code were executed, collect would create a binding for its x at the top
level of the iterate form that the let will shadow.

6 DIFFERENCES BETWEEN ITERATE AND LOOP 24

Happily, iterate is smart enough to catch these errors; it walks all problematical
code to ensure that free variables are not bound inside the loop body, and checks all
variables it binds for the same problem.

However, some errors cannot be caught:

(iter (with x = 3)

(for el in list)

(setq x 1)

(reducing el by #’+ initial-value x))

reducing moves its initial-value argument to the initialization part of the loop
in order to produce more efficient code. Since iterate does not perform data-flow
analysis, it cannot determine that x is changed inside the loop; all it can establish is
that x is not bound internally. Hence this code will not signal an error and will use
3 as the initial value of the reduction.

The following list summarizes all cases that are subject to these code motion and
variable-shadowing problems.

• Any variable for which iterate creates a binding, including those used in with

and the into keyword of many clauses.

• The special clauses which place code: initially, after-each, else, finally
and finally-protected.

• The variable of a next or do-next form.

• The initially arguments of for...initially...then and for...previous.

• The then argument of for...initially...then.

• The initial-value arguments of reducing and accumulate.

• The on-failure argument of finding...such-that.

6 Differences Between Iterate and Loop

loop contains a great deal of complexity which iterate tries to avoid. Hence
many esoteric features of loop don’t exist in iterate. Other features have been
carried over, but in a cleaned-up form. And of course, many new features have been
added; they are not mentioned in this list.

• iterate’s syntax is more Lisp-like than loop’s, having a higher density of
parens.

• The current implementation of iterate, unlike the current version of loop (as
documented in Common Lisp, 2nd Ed.), is extensible (see section 7).

7 ROLLING YOUR OWN 25

• loop puts the updates of all driver variables at the top of the loop; iterate
leaves them where the driver clauses appear.

• While for the most part iterate clauses that resemble loop clauses behave
similarly, there are some differences. For instance, there is no for...=...then in
iterate; instead use for...initially...then.

• loop binds the variable it at certain times to allow pseudo-English expres-
sions like when expr return it. In iterate, you must bind expr to a variable
yourself. Note that when expr return it is like thereis expr except that the
latter is an accumulation clause and therefore competes with other accumula-
tions (remember section 3.1 above).

• loop has a special return clause, illustrated in the previous item. iterate

doesn’t need one, since an ordinary Lisp return has the same effect.

• loop allows for parallel binding and stepping of iteration variables. iterate

does not. (See section 3.5.)

• loop and iterate handle variable type declarations very differently. loop pro-
vides a special syntax for declaring variable types, and does not examine dec-
larations. Moreover, the standard implementation of loop will generate dec-
larations when none are requested. iterate parses standard Common Lisp
type declarations, and will never declare a variable itself unless declarations are
specifically requested.

7 Rolling Your Own

7.1 Introduction

iterate is extensible—you can write new clauses that embody new iteration pat-
terns. You might want to write a new driver clause for a data structure of your own,
or you might want to write a clause that collects or manipulates elements in a way
not provided by iterate.

This section describes how to write clauses for iterate. Writing a clause is like
writing a macro. In fact, writing a clause is writing a macro: since iterate code-
walks its body and macroexpands, you can add new abstractions to iterate with
good old defmacro.

Actually, there are two extensions you can make to iterate that are even easier
than writing a macro. They are adding a synonym for an existing clause and defining
a driver clause for an indexable sequence. These can be done with defsynonym and
defclause-sequence, respectively. See section 7.3, below.

The rest of this section explains how to write macros that expand into iterate

clauses. Here’s how you could add a simplified version of iterate’s multiply clause,
if iterate didn’t already have one:

7 ROLLING YOUR OWN 26

(defmacro multiply (expr)

‘(reducing ,expr by #’* initial-value 1))

If you found yourself summing the square of an expression often, you might want
to write a macro for that. A first cut might be

(defmacro sum-of-squares (expr)

‘(sum (* ,expr ,expr)))

but if you are an experienced macro writer, you will realize that this code will
evaluate expr twice, which is probably a bad idea. A better version would use a
temporary:

(defmacro sum-of-squares (expr)

(let ((temp (gensym)))

‘(let ((,temp ,expr))

(sum (* ,temp ,temp)))))

Although this may seem complex, it is just the sort of thing you’d have to go
through to write any macro, which illustrates the point of this section: if you can
write macros, you can extend iterate.

Our macros don’t use iterate’s keyword-argument syntax. We could just use
keywords with defmacro, but we would still not be using iterate’s clause indexing
mechanism. Unlike Lisp, which uses just the first symbol of a form to determine what
function to call, iterate individuates clauses by the list of required keywords. For
instance, for...in and for...in-vector are different clauses implemented by distinct
Lisp functions.

To buy into this indexing scheme, as well as the keyword-argument syntax, use
defmacro-clause:

defmacro-clause arglist &body body [Macro]

Defines a new iterate clause. arglist is a list of symbols which are alternating
keywords and arguments. &optional may be used, and the list may be termi-
nated by &sequence. body is an ordinary macro body, as with defmacro. If
the first form of body is a string, it is considered a documentation string and
will be shown by display-iterate-clauses. defmacro-clause will signal
an error if defining the clause would result in an ambiguity. E.g. you cannot
define the clause for...from because there would be no way to distinguish it
from a use of the for clause with optional keyword from.

Here is multiply using defmacro-clause. The keywords are capitalized for read-
ability.

(defmacro-clause (MULTIPLY expr &optional INTO var)

‘(reducing ,expr by #’* into ,var initial-value 1))

You don’t have to worry about the case when var is not supplied; for any clause
with an into keyword, saying into nil is equivalent to omitting the into entirely.

7 ROLLING YOUR OWN 27

As another, more extended example, consider the fairly common iteration pattern
that involves finding the sequence element that maximizes (or minimizes) some func-
tion. iterate provides this as finding...maximizing, but it’s instructive to see how
to write it. Here, in pseudocode, is how you might write such a loop for maximizing
a function F:

set variable MAX-VAL to NIL;
set variable WINNER to NIL;
for each element EL in the sequence

if MAX-VAL is NIL or F(EL) > MAX-VAL then
set MAX-VAL to F(EL);
set WINNER to EL;

end if;
end for;
return WINNER.

Here is the macro:

(defmacro-clause (FINDING expr MAXIMIZING func &optional INTO var)

(let ((max-val (gensym))

(temp1 (gensym))

(temp2 (gensym))

(winner (or var iterate::*result-var*)))

‘(progn

(with ,max-val = nil)

(with ,winner = nil)

(cond

((null ,max-val)

(setq ,winner ,expr)

(setq ,max-val (funcall ,func ,winner))

(t

(let* ((,temp1 ,expr)

(,temp2 (funcall ,func ,temp1)))

(when (> ,temp2 ,max-val)

(setq ,max-val ,temp2)

(setq ,winner ,temp1))))))

(finally (leave ,winner)))))

Note that if no into variable is supplied, we use iterate::*result-var*, which
contains the internal variable into which all clauses place their results. If this variable
is bound by some clause, then iterate will return its value automatically; otherwise,
nil will be returned.

7 ROLLING YOUR OWN 28

7.2 Writing Drivers

In principle, drivers can be implemented just as easily as other iterate clauses.
In practice, they are a little harder to get right. As an example, consider writ-
ing a driver that iterates over all the elements of a vector, ignoring its fill-pointer.
for...in-vector won’t work for this, because it observes the fill-pointer. It’s neces-
sary to use array-dimension instead of length to obtain the size of the vector. Here
is one approach:

(defmacro-clause (FOR var IN-WHOLE-VECTOR v)

"All the elements of a vector (disregards fill-pointer)"

(let ((vect (gensym))

(end (gensym))

(index (gensym)))

‘(progn

(with ,vect = ,v)

(with ,end = (array-dimension ,vect 0))

(for ,index from 0 below ,end)

(dsetq ,var (aref ,vect ,index)))))

Note that we immediately put v in a variable, in case it is an expression. Again,
this is just good Lisp macrology. It also has a subtle effect on the semantics of the
driver: v is evaluated only once, at the beginning of the loop, so changes to v in the
loop have no effect on the driver. This is how all of iterate’s drivers work.

There is an important point concerning the progn in this code. We need the
progn, of course, because we are returning several forms, one of which is a driver.
But iterate drivers must occur at top-level. Is this code in error? No, because top-
level is defined in iterate to include forms inside a progn. This is just the definition
of top-level that Common Lisp uses, and for the same reason: to allow macros to
return multiple forms at top-level.

While our for...in-whole-vector clause will work, it is not ideal. In particular,
it does not support generating. Do do so, we need to use for...next or for...do-next.
The job is simplified by the defmacro-driver macro.

defmacro-driver arglist &body body [Macro]

Defines a driver clause in both the for and generate forms, and provides a
parameter generate which body can examine to determine how it was invoked.
arglist is as in defmacro-clause, and should begin with the symbol for.

With defmacro-driver, our driver looks like this:

(defmacro-driver (FOR var IN-WHOLE-VECTOR v)

"All the elements of a vector (disregards fill-pointer)"

(let ((vect (gensym))

(end (gensym))

7 ROLLING YOUR OWN 29

(index (gensym))

(kwd (if generate ’generate ’for)))

‘(progn

(with ,vect = ,v)

(with ,end = (array-dimension ,vect 0))

(with ,index = -1)

(,kwd ,var next (progn (incf ,index)

(if (>= ,index ,end) (terminate))

(aref ,vect ,index))))))

We are still missing one thing: the &sequence keywords. We can get them easily
enough, by writing

(defmacro-driver (FOR var IN-WHOLE-VECTOR v &sequence)

...)

We can now refer to parameters from, to, by, etc. which contain either the values
for the corresponding keyword, or nil if the keyword was not supplied. Implementing
the right code for these keywords is cumbersome but not difficult; it is left as an
exercise. But before you begin, see defclause-sequence below for an easier way.

7.3 Extensibility Aids

This section documents assorted features that may be of use in extending iterate.

iterate::*result-var* [Variable]

Holds the variable that is used to return a value as a result of the iterate

form. You may examine this and use it in a with clause, but you should not
change it.

defsynonym syn word [Macro]

Makes syn a synonym for the existing iterate keyword word. Only the first
word in each clause can have synonyms.

defclause-sequence element-name index-name [Macro]
&key access-fn size-fn sequence-type
element-type element-doc-string index-doc-string

Provides a simple way to define sequence clauses. Generates two clauses,
one for iterating over the sequence’s elements, the other for iterating over its
indices. The first symbol of both clauses will have print-name for. element-
name and index-name should be symbols. element-name is the second key-
word of the element iterator (typically of the form in-sequence-type), and
index-name is the second keyword of the index-iterator (typically of the form

7 ROLLING YOUR OWN 30

index-of-sequence-type). Either name may be nil, in which case the corre-
sponding clause is not defined. If both symbols are supplied, they should be
in the same package. The for that begins the clauses will be in this package.

access-fn is the function to be used to access elements of the sequence in
the element iterator. The function should take two arguments, a sequence and
an index, and return the appropriate element. size-fn should denote a function
of one argument, a sequence, that returns its size. Both access-fn and size-fn
are required for the element iterator, but only size-fn is needed for the index
iterator.

The sequence-type and element-type keywords are used to suggest types for
the variables used to hold the sequence and the sequence elements, respectively.
The usual rules about iterate’s treatment of variable type declarations apply
(see section 4).

element-doc-string and index-doc-string are the documentation strings, for
use with display-iterate-clauses.

The generated element-iterator performs destructuring on the element vari-
able.

As an example, the above for...in-whole-vector example could have been
written:

(defclause-sequence IN-WHOLE-VECTOR INDEX-OF-WHOLE-VECTOR

:access-fn ’aref

:size-fn #’(lambda (v) (array-dimension v 0))

:sequence-type ’vector

:element-type t

:element-doc-string

"Elements of a vector, disregarding fill-pointer"

:index-doc-string

"Indices of vector, disregarding fill-pointer")

7.4 Subtleties

There are some subtleties to be aware of when writing iterate clauses. First,
the code returned by your macros may be nconc’ed into a list, so you should always
returned freshly consed lists, rather than constants. Second, iterate matches clauses
by using eq on the first symbol and string= on the subsequent ones, so the package
of the first symbol of a clause is relevant. All of the clauses in this manual have their
first word in the iterate package. You can use the package system in the usual way
to shadow iterate clauses without replacing them.

8 NON-PORTABLE EXTENSIONS TO ITERATE (CONTRIBS) 31

8 Non-portable Extensions to Iterate (Contribs)

Currently, there is only one non-portable extension to iterate in the distribution:
iterate-pg. If you have made an extension that depends on non-portable features, feel
free to send them to asf@boinkor.net for inclusion in the iterate distribution.

8.1 An SQL query driver for iterate

The pg package by Eric Marsden (see http://cliki.net/pg) provides an inter-
face to the PostgreSQL database. Using the iterate-pg extension, it is possible to
handle the results of SQL queries using iterate.

This usage example should give you an idea of how to use it:

(pg:with-pg-connection (c "somedb" "someuser")

(iter (for (impl version date) in-relation "select * from version"

on-connection *dbconn*)

(collect version)))

To use the extension via ASDF, simply make your system depend on the iterate-pg
system instead of the iterate system. To load it manually, use:

(asdf:oos ’asdf:load-op :iterate-pg)

9 Obtaining Iterate

The information in this chapter is obsolete but included for completeness’s
sake; Currently, the most up-to-date information on iterate can be found at
http://boinkor.net/iterate.html.

iterate currently runs on Lisp Machines, and on HP’s, Sun3’s and Sparcsta-
tions under Lucid. iterate source and binaries are available at the MIT AI Lab
in the subdirectories of /src/local/lisplib/. The source file, iterate.lisp, is
also available for anonymous FTP in the directory /com/fpt/pub/ on the machine
TRIX.AI.MIT.EDU (Internet number 128.52.32.6). If you are unable to obtain iterate

in one of these ways, send mail to jba@ai.mit.edu and I will send you the source
file.

iterate resides in the iterate package (nickname iter). Just say
(use-package "ITERATE") to make all the necessary symbols available. If a symbol
is not exported, it appears in this manual with an “iterate::” prefix.

Send bug reports to bug-iterate@ai.mit.edu. The info-iterate mailing list
will have notices of changes and problems; to have yourself added, send mail to
info-iterate-request@ai.mit.edu.

Acknowledgements

9 OBTAINING ITERATE 32

Richard Waters provided invaluable criticism which spurred me to improve iterate
greatly. As early users, David Clemens, Oren Etzioni and Jeff Siskind helped ferret
out many bugs.

Index

33

Index

always-declare-variables, 23
list-end-test, 6
result-var, 29
accumulate, 14
adjoining, 14
after-each, 17
always, 15
appending, 14
collect, 13
counting, 13
declare-variables, 23
defclause-sequence, 29
defmacro-clause, 26
defmacro-driver, 28
defsynonym, 29
display-iterate-clauses, 20
dsetq, 19
else, 17
finally-protected, 17
finally, 17
finding...maximizing, 15
finding...minimizing, 15
finding...such-that, 14
finish, 16
for...=, 10
for...do-next, 7
for...first...then, 11
for...in-file, 7
for...in-hashtable, 6
for...in-package, 7
for...in-sequence, 6
for...in-stream, 7
for...in-string, 6
for...in-vector, 6
for...index-of-sequence, 6
for...index-of-string, 6
for...index-of-vector, 6
for...initially...then, 11
for...in, 5

for...next, 7
for...on, 6
for...previous, 9
for, 5
if-first-time, 17
initially, 17
in, 18
leave, 16
maximize, 13
minimize, 13
multiply, 12
nconcing, 14
never, 16
next-iteration, 16
nunioning, 14
reducing, 13
repeat, 4
sum, 12
terminate, 7
thereis, 16
the, 21
unioning, 14
until, 16
while, 16
with, 10

34

