
A Tour of XMLUnit

What is XMLUnit?
XMLUnit enables JUnit-style assertions to be made about the content and structure of XML1. It is an open
source project hosted at http://xmlunit.sourceforge.net that grew out of a need to test a system that
generated and received custom XML messages. The problem that we faced was how to verify that the
system generated the correct message from a known set of inputs. Obviously we could use a DTD or a
schema to validate the message output, but this approach wouldn’t allow us to distinguish between valid
XML with correct content (e.g. element <foo>bar</foo>) and valid XML with incorrect content (e.g.
element <foo>baz</foo>). What we really wanted was an assertXMLEquals() method, so we could
compare the message that we expected the system to generate and the message that the system actually
generated. And that was the beginning of XMLUnit.

Quick tour
XMLUnit provides a single JUnit extension class, XMLTestCase, and a set of supporting classes that allow
assertions to be made about:
• The differences between two pieces of XML (via Diff and DetailedDiff classes)
• The validity of a piece of XML (via Validator class)
• The outcome of transforming a piece of XML using XSLT (via Transform class)
• The evaluation of an XPath expression on a piece of XML (via SimpleXpathEngine class)
• Individual nodes in a piece of XML that are exposed by DOM Traversal (via NodeTest class)
XMLUnit can also treat HTML content, even badly-formed HTML, as valid XML to allow these
assertions to be made about web pages (via the HTMLDocumentBuilder class).

Glossary
As with many projects some words in XMLUnit have particular meanings so here is a quick overview. A
piece of XML is a DOM Document, a String containing marked-up content, or a Source or Reader that
allows access to marked-up content within some resource. XMLUnit compares the expected control XML
to some actual test XML. The comparison can reveal that two pieces of XML are identical, similar or
different. The unit of measurement used by the comparison is a difference, and differences can be either
recoverable or unrecoverable. Two pieces of XML are identical if there are no differences between them,
similar if there are only recoverable differences between them, and different if there are any unrecoverable
differences between them.

Configuring XMLUnit
There are many Java XML parsers available, and XMLUnit should work with any JAXP compliant parser
library, such as Xerces from the Apache Jakarta project. To use the XSL and XPath features of XMLUnit a
Trax compliant transformation engine is required, such as Xalan, from the Apache Jakarta project. To
configure XMLUnit to use your parser and transformation engine set three System properties before any
tests are run, e.g.

Syst em. set Pr oper t y(" j avax. xml . par ser s. Document Bui l der Fact or y" ,
" or g. apache. xer ces. j axp. Document Bui l der Fact or yI mpl ") ;
Syst em. set Pr oper t y(" j avax. xml . par ser s. SAXPar ser Fact or y" ,
" or g. apache. xer ces. j axp. SAXPar ser Fact or yI mpl ") ;
Syst em. set Pr oper t y(" j avax. xml . t r ansf or m. Tr ansf or mer Fact or y" ,
" or g. apache. xal an. pr ocessor . Tr ansf or mer Fact or yI mpl ") ;

Alternatively there are static methods on the XMLUnit class that can be called directly. The advantage of
this approach is that you can specify a different parser class for control and test XML and change the

1 For more information about JUnit see http://www.junit.org.

current parser class at any time in your tests, should you need to make assertions about the compatibility of
different parsers.

XMLUni t . set Cont r ol Par ser (" or g. apache. xer ces. j axp. Document Bui l der Fact or yI
mpl ") ;
XMLUni t . set Test Par ser (" or g. apache. xer ces. j axp. Document Bui l der Fact or yI mpl
") ;
XMLUni t . set SAXPar ser Fact or y(" or g. apache. xer ces. j axp. SAXPar ser Fact or yI mpl
") ;
XMLUni t . set Tr ansf or mer Fact or y(" or g. apache. xal an. pr ocessor . Tr ansf or mer Fac
t or yI mpl ") ;

Writing XML comparison tests
Let’s say we have two pieces of XML that we wish to compare and assert that they are equal. We could
write a simple test class like this:

public class MyXMLTest Case extends XMLTest Case {
 public MyXMLTest Case(St r i ng name) {
 super(name) ;
 }
 public void t est For Equal i t y() throws Except i on {
 St r i ng myCont r ol XML = " <msg><uui d>0x00435A8C</ uui d></ msg>" ;
 St r i ng myTest XML = " <msg><l ocal I d>2376</ l ocal I d></ msg>" ;
 asser t XMLEqual (" Compar i ng t est xml t o cont r ol xml " ,
 myCont r ol XML, myTest XML) ;
 }
}
The assertXMLEqual test will pass if the control and test XML are either similar or identical. Obviously in
this case the pieces of XML are different and the test will fail. The failure message indicates both what the
difference is and the Xpath locations of the nodes that were being compared:
Compar i ng t est xml t o cont r ol xml
[di f f er ent] Expect ed el ement t ag name ' uui d' but was ' l ocal I d' -
compar i ng <uui d. . . > at / msg[1] / uui d[1] t o <l ocal I d. . . > at
/ msg[1] / l ocal I d[1]

When comparing pieces of XML, the XMLTestCase actually creates an instance of the Diff class. The Diff
class stores the result of an XML comparison and makes it available through the methods similar() and
identical(). The assertXMLEquals() method tests the value of Diff.similar() and the assertXMLIdentical()
method tests the value of Diff.identical().
It is easy to create a Diff instance directly without using the XMLTestCase class as below:

 public void t est XMLI dent i cal () throws Except i on {
 St r i ng myCont r ol XML =
 " <st r uct ><i nt >3</ i nt ><bool ean>f al se</ bool ean></ st r uct >" ;
 St r i ng myTest XML =
 " <st r uct ><bool ean>f al se</ bool ean><i nt >3</ i nt ></ st r uct >" ;
 Di f f myDi f f = new Di f f (myCont r ol XML, myTest XML) ;
 asser t Tr ue(“ XML si mi l ar ” + myDi f f . t oSt r i ng() ,
 myDi f f . s i mi l ar ()) ;
 asser t Tr ue(“ XML i dent i cal ” + myDi f f . t oSt r i ng() ,
 myDi f f . i dent i cal ()) ;
 }
This test fails as two pieces of XML are similar but not identical if their nodes occur in a different
sequence. The failure message reported by JUnit from the call to myDiff.toString() looks like this:
[not i dent i cal] Expect ed sequence of chi l d nodes ' 0' but was ' 1' -
compar i ng <i nt . . . > at / st r uct [1] / i nt [1] t o <i nt . . . > at / st r uct [1] / i nt [1]

For efficiency reasons a Diff stops the comparison process as soon as the first difference is found. To get all
the differences between two pieces of XML an instance of the DetailedDiff class, a subclass of Diff, is
required. Note that a DetailedDiff is constructed using an existing Diff instance.

Consider this test that uses a DetailedDiff:

 public void t est Al l Di f f er ences() throws Except i on {
 St r i ng myCont r ol XML = " <news><i t em i d=\ " 1\ " >War </ i t em>"
 + " <i t em i d=\ " 2\ " >Pl ague</ i t em>"
 + " <i t em i d=\ " 3\ " >Fami ne</ i t em></ news>" ;
 St r i ng myTest XML = " <news><i t em i d=\ " 1\ " >Peace</ i t em>"
 + " <i t em i d=\ " 2\ " >Heal t h</ i t em>"
 + " <i t em i d=\ " 3\ " >Pl ent y</ i t em></ news>" ;
 Det ai l edDi f f myDi f f = new Det ai l edDi f f (
 new Di f f (myCont r ol XML, myTest XML)) ;
 Li st al l Di f f er ences = myDi f f . get Al l Di f f er ences() ;
 asser t Equal s(myDi f f . t oSt r i ng() , 2, al l Di f f er ences. si ze()) ;
 }
This test fails with the message below as each of the 3 news items differs between the control and test
XML:
[di f f er ent] Expect ed t ext val ue ' War ' but was ' Peace' - compar i ng <i t em
. . . >War </ i t em> at / news[1] / i t em[1] / t ext () [1] t o <i t em . . . >Peace</ i t em>
at / news[1] / i t em[1] / t ext () [1]
[di f f er ent] Expect ed t ext val ue ' Pl ague' but was ' Heal t h' - compar i ng
<i t em . . . >Pl ague</ i t em> at / news[1] / i t em[2] / t ext () [1] t o <i t em
. . . >Heal t h</ i t em> at / news[1] / i t em[2] / t ext () [1]
[di f f er ent] Expect ed t ext val ue ' Fami ne' but was ' Pl ent y' - compar i ng
<i t em . . . >Fami ne</ i t em> at / news[1] / i t em[3] / t ext () [1] t o <i t em
. . . >Pl ent y</ i t em> at / news[1] / i t em[3] / t ext () [1]
expect ed <2> but was <3>

The List returned from the getAllDifferences() method contains Difference instances. These instances
describe both the type2 of difference found between a control node and test node and the NodeDetail of
those nodes (including the XPath location of each node). Difference instances are passed at runtime in
notification events to a registered DifferenceListener, an interface whose default implementation is
provided by the Diff class.

However it is possible to override this default behaviour by implementing the interface in your own class.
The IgnoreTextAndAttributeValuesDifferenceListener class is an example of how to implement a custom
DifferenceListener. It allows an XML comparison to be made that ignores differences in the values of text
and attribute nodes, for example when comparing a skeleton or outline piece of XML to some generated
XML.
The following test illustrates the use of a custom DifferenceListener:

 public void t est Compar eToSkel et onXML() throws Except i on {
 St r i ng myCont r ol XML = " <l ocat i on><st r eet - addr ess>22 any
st r eet </ st r eet - addr ess><post code>XY00 99Z</ post code></ l ocat i on>" ;
 St r i ng myTest XML = " <l ocat i on><st r eet - addr ess>20 east
cheap</ st r eet - addr ess><post code>EC3M 1EB</ post code></ l ocat i on>" ;
 Di f f er enceLi st ener myDi f f er enceLi st ener =
 new I gnor eText AndAt t r i but eVal uesDi f f er enceLi st ener () ;
 Di f f myDi f f = new Di f f (myCont r ol XML, myTest XML) ;
 myDi f f . over r i deDi f f er enceLi st ener (myDi f f er enceLi st ener) ;
 asser t Tr ue(" t est XML mat ches cont r ol skel et on XML" ,
 myDi f f . s i mi l ar ()) ;
 }

The DifferenceEngine class generates the events that are passed to a DifferenceListener implementation as
two pieces of XML are compared. Using recursion it navigates through the nodes in the control XML
DOM, and determines which node in the test XML DOM qualifies for comparison to the current control

2 A full set of prototype Difference instances - one for each type of difference - is defined using final static
fields in the DifferenceConstants class.

node. The qualifying test node will match the control node's node type, as well as the node name and
namespace (if defined for the control node).

However when the control node is an Element, it is less straightforward to determine which test Element
qualifies for comparison as the parent node may contain repeated child Elements with the same name and
namespace. So for Element nodes, an instance of the ElementQualifier interface is used determine whether
a given test Element node qualifies for comparison with a control Element node. This separates the decision
about whether two Elements should be compared from the decision about whether those two Elements are
considered similar. By default an ElementNameQualifier class is used that compares the nth child <abc>
test element to the nth child <abc> control element, i.e. the sequence of the child elements in the test XML
is important. However this default behaviour can be overridden using an ElementNameAndTextQualifier or
ElementNameAndAttributesQualifier.

The test below demonstrates the use of a custom ElementQualifier:

public void t est Repeat edChi l dEl ement s() throws Except i on {
 St r i ng myCont r ol XML = " <sui t e>"
 + " <t est st at us=\ " pass\ " >Fi r st Test Case</ t est >"
 + " <t est st at us=\ " pass\ " >SecondTest Case</ t est ></ sui t e>" ;
 St r i ng myTest XML = " <sui t e>"
 + " <t est st at us=\ " pass\ " >SecondTest Case</ t est >"
 + " <t est st at us=\ " pass\ " >Fi r st Test Case</ t est ></ sui t e>" ;

 asser t XMLNot Equal (" Repeat ed chi l d el ement s i n di f f er ent sequence
or der ar e not equal by def aul t " ,
 myCont r ol XML, myTest XML) ;

 Di f f myDi f f = new Di f f (myCont r ol XML, myTest XML) ;
 myDi f f . over r i deEl ement Qual i f i er (
 new El ement NameAndText Qual i f i er ()) ;
 asser t XMLEqual (" But t hey ar e equal when an El ement Qual i f i er
cont r ol s whi ch t est el ement i s compar ed wi t h each cont r ol el ement " ,
 myDi f f , true) ;
 }

Comparing XML Transformations
XMLUnit can test XSL transformations at a high level using the Transform class that wraps an
javax.xml.transform.Transformer instance. Knowing the input XML, input stylesheet and expected output
XML we can assert that the output of the transformation matches the expected output as follows:

 public void t est XSLTr ansf or mat i on() throws Except i on {
 St r i ng myI nput XML = " . . . " ;
 Fi l e mySt yl esheet Fi l e = new Fi l e(" . . . ") ;
 Tr ansf or m myTr ansf or m =
 new Tr ansf or m(myI nput XML, mySt yl esheet Fi l e) ;
 St r i ng myExpect edOut put XML = " . . . " ;
 Di f f myDi f f = new Di f f (myExpect edOut put XML, myTr ansf or m) ;
 asser t Tr ue(" XSL t r ansf or mat i on wor ked as expect ed" ,
myDi f f . s i mi l ar ()) ;
 }
The getResultString() and getResultDocument() methods of the Transform class can be used to access the
result of the XSL transformation programmatically if required, for example as below:

public void t est Anot her XSLTr ansf or mat i on() throws Except i on {
 Fi l e myI nput XMLFi l e = new Fi l e(" . . . ") ;
 Fi l e mySt yl esheet Fi l e = new Fi l e(" . . . ") ;
 Tr ansf or m myTr ansf or m = new Tr ansf or m(
 new St r eamSour ce(myI nput XMLFi l e) ,
 new St r eamSour ce(mySt yl esheet Fi l e)) ;

 Document myExpect edOut put XML =
 XMLUni t . bui l dDocument (XMLUni t . get Cont r ol Par ser () ,
 new Fi l eReader (" . . . ")) ;
 Di f f myDi f f = new Di f f (myExpect edOut put XML,
 myTr ansf or m. get Resul t Document ()) ;
 asser t Tr ue(" XSL t r ansf or mat i on wor ked as expect ed" ,
 myDi f f . s i mi l ar ()) ;
 }

Validation Tests
XML parsers that validate a piece of XML against a DTD are common, however they rely on a DTD
reference being present in the XML, and they can only validate against a single DTD. When writing a
system that exchanges XML messages with third parties there are times when you would like to validate
the XML against a DTD that is not available to the recipient of the message and so cannot be referenced in
the message itself. XMLUnit provides a Validator class for this purpose.

 public void t est Val i dat i on() throws Except i on {
 XMLUni t . get Test Document Bui l der Fact or y() . set Val i dat i ng(true) ;
 / / As t he document i s par sed i t i s val i dat ed agai nst i t s
r ef er enced DTD
 Document myTest Document = XMLUni t . bui l dTest Document (" . . . ") ;
 St r i ng mySyst emI d = " . . . " ;
 St r i ng myDTDUr l = new Fi l e(" . . . ") . t oURL() . t oExt er nal For m() ;
 Val i dat or myVal i dat or = new Val i dat or (
 myTest Document , mySyst emI d, myDTDUr l) ;
 asser t Tr ue(" t est document val i dat es agai nst unr ef er enced DTD" ,
 myVal i dat or . i sVal i d()) ;
 }

Xpath Tests
One of the strengths of XML is the ability to programmatically extract specific parts of a document using
XPath expressions. The XMLTestCase class offers a number of XPath related assertion methods, as
demonstrated in this test:

 public void t est XPat hs() throws Except i on {
 St r i ng mySol ar Syst emXML = " <sol ar - syst em>"
 + " <pl anet name=' Ear t h' posi t i on=' 3' suppor t sLi f e=' yes' / >"
 + " <pl anet name=' Venus' posi t i on=' 4' / ></ sol ar - syst em>" ;
 asser t Xpat hExi st s(" / / pl anet [@name=' Ear t h'] " , mySol ar Syst emXML) ;
 asser t Not Xpat hExi st s(" / / st ar [@name=' al pha cent aur i '] " ,
 mySol ar Syst emXML) ;
 asser t Xpat hsEqual (" / / pl anet [@name=' Ear t h'] " , "
 " / / pl anet [@posi t i on=' 3'] " , mySol ar Syst emXML) ;
 asser t Xpat hsNot Equal (" / / pl anet [@name=' Venus'] " , "
 " / / pl anet [@suppor t sLi f e=' yes'] " , mySol ar Syst emXML) ;
 }

When an XPath expression is evaluated against a piece of XML a NodeList is created that contains the
matching Nodes. The methods in the previous test – assertXPathExists, assertNotXPathExists,
assertXPathsEqual, and assertXPathsNotEqual – use these NodeLists. However, the contents of a NodeList
can be flattened (or String-ified) to a single value, and XMLUnit also allows assertions to be made about
this single value, as in this test3:

 public void t est XPat hVal ues() throws Except i on {
St r i ng myJavaFl avour s = " <j ava- f l avour s>"

 + " <j vm cur r ent =' some pl at f or ms' >1. 1. x</ j vm>"
 + " <j vm cur r ent =' no' >1. 2. x</ j vm>"
 + " <j vm cur r ent =' yes' >1. 3. x</ j vm>"

3 Each of the assertXpath…() methods uses the SimpleXpathEngine class to evaluate an Xpath expression.

 + " <j vm cur r ent =' yes' l at est =' yes' >1. 4. x</ j vm></ j ava-
f l avour s>" ;
 asser t Xpat hEval uat esTo(" 2" , " count (/ / j vm[@cur r ent =' yes']) " , "
 myJavaFl avour s) ;
 asser t Xpat hVal uesEqual (" / / j vm[4] / @l at est " , " / / j vm[4] / @cur r ent " , "
 myJavaFl avour s) ;
 asser t Xpat hVal uesNot Equal (" / / j vm[2] / @cur r ent " , "
 " / / j vm[3] / @cur r ent " , myJavaFl avour s) ;
 }

Xpaths are especially useful where a document is made up largely of known, unchanging content with only
a small amount of changing content created by the system. One of the main areas where constant
‘boilerplate’ markup is combined with system generated markup is of course in web applications. The
power of XPath expressions can make testing web page output quite trivial, and XMLUnit supplies a means
of converting even very badly formed HTML into XML to aid this approach to testing.

The HTMLDocumentBuilder class uses the Swing HTML parser to convert marked-up content to Sax
events. The TolerantSaxDocumentBuilder class handles the Sax events to build up a DOM document in a
tolerant fashion i.e. without mandating that opened elements are closed. (In a purely XML world this class
would have no purpose as there are plenty of Sax event handlers that can build DOM documents from well
formed content). The test below illustrates how the use of these classes:

 public void t est Xpat hsI nHTML() throws Except i on {
 St r i ng someBadl yFor medHTML = " <ht ml ><t i t l e>Ugh</ t i t l e>"
 + " <body><h1>Headi ng"
 + " <l i i d=' 1' >I t em One<l i i d=' 2' >I t em Two" ;
 Tol er ant SaxDocument Bui l der t ol er ant SaxDocument Bui l der = "
 new Tol er ant SaxDocument Bui l der (XMLUni t . get Test Par ser ()) ;
 HTMLDocument Bui l der ht ml Document Bui l der = "
 new HTMLDocument Bui l der (t ol er ant SaxDocument Bui l der) ;
 Document wel l For medDocument = "
 ht ml Document Bui l der . par se(someBadl yFor medHTML) ;
 asser t Xpat hEval uat esTo(" I t em One" , " / ht ml / body/ / l i [@i d=' 1'] " , "
 wel l For medDocument) ;
 }

One of the key points about using Xpaths with HTML content is that extracting values in tests requires the
values to be identifiable. (This is just another way of saying that testing HTML is easier when it is written
to be testable.) In the previous example id attributes were used to identify the list item values that needed to
be testable, however class attributes or span and div tags can also be used to identify specific content for
testing.

Testing by Tree Walking
The DOM specification allows a Document to optionally implement the DocumentTraversal interface. This
interface allows an application to iterate over the Nodes contained in a Document, or to ‘walk the DOM
tree’ . The XMLUnit NodeTest class and NodeTester interface make use of DocumentTraversal to expose
individual Nodes in tests: the former handles the mechanics of iteration, and the latter allows custom test
strategies to be implemented. A sample test strategy is supplied by the CountingNodeTester class that
counts the nodes presented to it and compares the actual count to an expected count. The test below
illustrates its use:

 public void t est Count i ngNodeTest er () throws Except i on {
 St r i ng t est XML = " <f i bonacci ><val >1</ val ><val >2</ val ><val >3</ val >"
 + " <val >5</ val ><val >9</ val ></ f i bonacci >" ;
 Count i ngNodeTest er count i ngNodeTest er = new Count i ngNodeTest er (4) ;
 asser t NodeTest Passes(t est XML, count i ngNodeTest er , Node. TEXT_NODE) ;
 }
This test fails as there are 5 text nodes, and JUnit supplies the following message:

Expect ed node t est t o pass, but i t f ai l ed! Count ed 5 node(s) but
expect ed 4

Note that if your DOM implementation does not support the DocumentTraversal interface then XMLUnit
will throw an IllegalArgumentException informing you that you cannot use the NodeTest or NodeTester
classes. Unfortunately even if your DOM implementation does support DocumentTraversal, attributes are
not exposed by iteration: however they can be examined from the Element node that contains them.

While the previous test could have been easily performed using XPath, there are times when Node iteration
is more powerful. In general, this is true when there are programmatic relationships between nodes that can
be more easily tested iteratively. The following test uses a custom NodeTester class to illustrate the
potential:

 public void t est Cust omNodeTest er () throws Except i on {
 St r i ng t est XML = " <f i bonacci ><val >1</ val ><val >2</ val ><val >3</ val >"
 + " <val >5</ val ><val >9</ val ></ f i bonacci >" ;
 NodeTest nodeTest = new NodeTest (t est XML) ;
 asser t NodeTest Passes(nodeTest , new Fi bonacci NodeTest er () ,
 new short[] { Node. TEXT_NODE, Node. ELEMENT_NODE} , true) ;
 }

 private class Fi bonacci NodeTest er extends Abst r act NodeTest er {
 private int next Val = 1, l ast Val = 1, pr i or Val = 0;
 public void t est Text (Text t ext) throws NodeTest Except i on {
 int val = I nt eger . par seI nt (t ext . get Dat a()) ;
 if (next Val ! = val) {
 throw new NodeTest Except i on(" I ncor r ect val ue" , t ext) ;
 }
 next Val = val + l ast Val ;
 pr i or Val = l ast Val ;
 l ast Val = val ;
 }
 public void t est El ement (El ement el ement)
 throws NodeTest Except i on {
 St r i ng name = el ement . get Local Name() ;
 if (" f i bonacci " . equal s(name) | | " val " . equal s(name)) {
 return;
 }
 throw new NodeTest Except i on(" Unexpect ed el ement " , el ement) ;
 }
 public void noMor eNodes(NodeTest nodeTest)
 throws NodeTest Except i on {
 }
 }

The test fails because the XML contains the wrong value for the last number in the sequence:
Expect ed node t est t o pass, but i t f ai l ed! I ncor r ect val ue [#t ext : 9]

Tim Bacon timbacon@users.sourceforge.net January 2003

