
LTK - a Lisp binding to the Tk toolkit

Peter Herth

January 30, 2005

Contents

1 Introduction 3

2 Installation 3

3 Tutorial 5
3.1 First steps . 5
3.2 A more complex example . 6
3.3 Running it manually . 7
3.4 Special variables . 7
3.5 Generic functions . 8
3.6 The pack geometry manager 8
3.7 The grid geometry manager 9
3.8 Configuring widgets . 9

4 Event handling 10
4.1 command . 10
4.2 bind . 11

5 Widgets 12
5.1 Button . 12
5.2 Check-button . 13
5.3 Radio-button . 13
5.4 Canvas . 13

5.4.1 Managing graphical objects 15
5.4.2 Example . 17

1

5.5 Entry . 18
5.6 Label . 18
5.7 Labelframe . 18
5.8 Listbox . 18
5.9 Menu . 18
5.10 Message . 18
5.11 Paned-window . 18
5.12 Photo-image . 18
5.13 Scale . 18
5.14 Scrollbar . 18
5.15 Spinbox . 18
5.16 Text . 18
5.17 Toplevel . 19

6 Screen functions 19

7 Window manager functions 20

8 Under the hood 22
8.1 Communication . 23
8.2 Writing Ltk extensions . 24

9 ltk-remote 27

10 ltk-mw 27
10.1 progress . 27
10.2 history-entry . 28
10.3 menu-entry . 28

2

1 Introduction

Tk is a graphics toolkit for the tcl programming language developed by John
Ousterhout. Initially developed for the X-Window system, it has been ported
to a wide selection of operating systems, including Windows and MacOs. Due
to ist ubiquous nature, its an ideal candidate to write a portable GUI library
for Lisp.

While one can find many code snippets how to set up a communication
with Tk from Lisp, the use of those to create actual programs, requires tcl/tk
knowledge. In fact this way the GUIs are created by tcl code put into lisp
programs. But one does not become a Lisp programmer to then write the
GUIs in tcl/tk. So the Ltk library was born, to create a wrapper around Tk
in pure Lisp. Ideally, no tcl/tk knowledge is required to write GUIs. However
the lisp code is made closely to the tcl/tk library structure, so that the man
pages for the tk widgets can serve as a detailled reference. They should be
readable without any tcl knowledge.

The main objective for Ltk was to create a GUI library which is portable
across different operating systems and Common Lisp implementations. Fur-
thermore it should be easy to set up. So with the exception of one single
function, the whole code of ltk is pure ANSI Common Lisp. No external
programs besides a standard installation of tcl/tk are required.

Ltk supports the following Lisp systems: Allegro, CMUCL, CLisp, ECL,
LispWorks, OpenMCL, SBCL. Ltk was successfully tested using Lispworks,
CLisp, CMUCL, SBCL under Linux and Lispworks, CLisp, and SBCL using
Mac Os X, CLisp, Allegro and Lispworks using Windows.

2 Installation

This is the shortest section of this document. You just compile the file:

(compile-file "ltk")

and load it:

(load "ltk")

Now ltk is ready to use. For trying out the examples of this document, you
might want to import the package:

3

(use-package ’ltk)

And to look, whether it works call the test example:

(ltktest)

or, for some fun:

(ltk::ltk-eyes)

To use Ltk you need of course tcl/tk installed. This should be default
on most Linux systems, for Windows/Mac Os you need to download and
install tcl/tk. Ltk has been tested against Tcl/Tk 8.4, but other versions
should work also. Alternatively, you can use ASDF to load ltk. If you have a
symbolic link to lkt.asd in your site-systems directory a simple (require ’ltk)
compiles and loads ltk (assuming you have ASDF loaded).

4

3 Tutorial

3.1 First steps

Let’s start with the obligatory “hello world” type of program:

(defun hello-1()

(with-ltk

(let ((b (make-instance ’button

:master nil

:text "Press Me"

:command (lambda ()

(format t "Hello World!~&")))))

(pack b))))

Figure 1: The window created by hello-1

Let’s go through it step-by-step. The whole code of hello-1 is wrapped
into the with-ltk macro. It ensures that the GUI library is properly set
up and the communication with the Tk toolkit is established. It runs the
contained code which should initialize the GUI and after that calls mainloop
to process the GUI events.

The next step is to create the button. This is done by creating an in-
stance of the class button. The :text argument gives the text to display
on the button and :command is the function to call, whenever the button is
pressed. While the last two arguments should be obvious, the master needs
explanation. In Tk, all GUI elements are arranged in a tree. So every GUI
element has a parent node or “master” which designates its position in the
tree structure. So put there the object that should be the parent for your
button. Only for top level components nil may be given instead of an object.

For displaying any ltk object, a layout manager is used. There are two
layout managers available, which can be used to arrange widgets in its parent,
pack and grid. pack arranges widgets as a heap of boxes, which are hori-
zontally or vertically stacked. grid arranges widgets in a table-like layout.

5

NEVER use pack and grid for the same container, unpredictable behaviour
may the result (or rather, the program will very predictably crash).

3.2 A more complex example

(defun hello-2()

(with-ltk

(let* ((f (make-instance ’frame))

(b1 (make-instance ’button

:master f

:text "Button 1"

:command (lambda () (format t "Button1~&"))))

(b2 (make-instance ’button

:master f

:text "Button 2"

:command (lambda () (format t "Button2~&")))))

(pack f)

(pack b1 :side :left)

(pack b2 :side :left)

(configure f :borderwidth 3)

(configure f :relief :sunken)

)))

Figure 2: The window created by hello-2

The example hello-2 shows how you group 2 buttons within a frame and
configure widgets in general. The created frame is given as the master pa-
rameter to the button creations. This automatically ensures that the buttons
are packed within the frame. To change the appeareance of the Frame f, the
configure function is used. This is a very generic function, which can be
used upon any tk object. It takes two arguments, the name of the configu-
ration option and the value to set into it. The value can be any tk object or
any properly printable Lisp object.

6

In this case, we set the width of the border of the frame to 3 and make it
a sunken border. Other styles would be raised, ridge, groove, flat and solid.
For a comprehensive list of configuration options look in the manpage of the
tk widgets as well as man options for options shared by all tk widgets.

3.3 Running it manually

While the with-ltk macro is the most convenient way to run Ltk, you can do
it manuall, especially if you want to play with the Ltk objects in the REPL.
To start Ltk you just need to call:

(start-wish)

which starts the Tk sub process and initializes the stream to communicate
with it. Now you can create and use any Ltk objects. To enable event
handling call

(mainloop)

which is responsible for event handling. You can interrupt it any time you
like, call any lisp function and restart it again.

3.4 Special variables

The following special variables are defined:

debug-tk When t, the communication with wish is echoed to the stan-
dard output. Default value: t

wish-pathname The path to the executable to wish.

wish-args The arguments passed to the call to wish. Default value:
("-name" "LTK")

ltk-version The version of the Ltk library.

7

3.5 Generic functions

The following generic functions are defined on widgets:

(value widget) Reads/sets the value of the widget. Applicable for: check-button,
radio-button, menucheckbutton, menuradiobutton, scale.

(text widget) Reads/sets the text of the widget. Depending on the wid-
get, this can be text displayed on the widget (button) or contained as
data (entry). Applicable for button, check-button, entry, label,
labelframe, spinbox, text.

3.6 The pack geometry manager

The pack geometry manager treats widges as boxes to be piled into one
direction. This direction can be either horizontally or vertically. Complex
layouts can be created by using frames to pack piles together.

The behaviour of the pack geometry manager is controlled by the keyword
parameters to the pack function. The keywords and their effects are:

:side The direction in which the widgets are packed. Possible values are
:left , :right, :top (default), :bottom.

:expand If t, then the packed widget may take more place than

:fill Allows the packed widget to grow in the given direction, if it gets
expanded. Possible values are :none (default), :x, :y or :both needed.

:after widget Pack it after the widget.

:before widget Pack it before the widget

:padx n Leave n pixel space in x direction around the widget.

:pady n Leave n pixel space in y direction around the widget.

:ipadx n Grow the widget n pixel in x direction.

:ipady n Grow the widget n pixel in y direction.

:anchor direction Specify which point of the widget to use for anchoring it,
for example :ne for the upper right corner.

8

3.7 The grid geometry manager

The grid geometry manager creates a table-like layout. So to arrange a widget
with the grid manager, use the grid function with the parameters of row
and column number (starting from zero). There is one keyword parameter
:sticky which governs the widget alignment within its table cell. Its a string
containing any combination of “n” “e” “s” and “w”.

The behaviour of the single rows and columns of the grid are controlled
by the grid-rowconfigure and grid-columnconfigure functions. Its most
common use is to set the weight of a column between 0 and 1 to control the
resizing behaviour.

3.8 Configuring widgets

Almost all aspects of widgets can be configured after creation via the configure
function. It has the form: (configure widget option value) where widget
is the widget to be configured, option the name of the option to configure
(on the Lisp side a string or a keyword) and value any printable value that
should be set for the option or a tkobject. Options used by all widgets are
(not complete):

anchor position n, ne, e, se, s, sw, w, nw, center

background color Background color of the widget

bitmap bitmap Specifies a bitmap to display in the widget.

borderwidth width borderwidth in pixels

cursor cursorname Set the icon for the mouse cursor. A list of portable
names is in the variable *cursors.

foreground color Foreground color.

image image Photo image to be displayed on the widget.

justify value Justification of text displayed on the widget, may be left,
center, or right.

padx pixels Extra padding around the widget.

9

pady pixels Extra padding around the widget.

relief value Effect for border display. May be raised, sunken, flat, ridge,
solid, or groove.

orient orientation The orientation of the widget (e.g. for scrollbars). May
be horizontal or vertical.

takefocus takeit 0 or 1, determines whether the widget accepts the focus.

text string The text to be displayed on the widget.

underline index The index of the character to underline in the text of the
widget for keyboard traversal.

Example: (configure txt :background :blue)

4 Event handling

There are two ways to get notified by Tk events: command and bind. Widgets,
which have a default event type, like pressing buttons, define a command

initarg. With it, a function can be bound to this default event type. This is
a function, that will be called with zero or one parameter, depending on the
widget type. For those that use it, this parameter will be the value of the
widget (example value of the scale widget).

4.1 command

With the command property a function for handling the default event type of
widgets can be specified. This can be done with the :command initarg or the
command accessor (settable) for those widgets. The widgets that support the
command property are listed in table 1. The first column lists the widgets,
the second which arguments the function is passed (if any) and the third
one gives a brief description about when the event happens and what the
arguments contain.

10

widget argument description

button - called when the button is clicked
check-button value report the value when the button is clicked
listbox selection a list of the selected indices (0 for first) whenever

the listbox is clicked
scale value whenever the value is changed, called with the new

value
spinbox value whenever the value of the spinbox is changed by

the buttons, the new one is returned

Table 1: Classes with a command property and their descriptions

4.2 bind

A more generic and complex event type can be created via the bind function.
With it for any widget type events can be defined, the function bound to it
always needs to accept one parameter an event structure. Its usage is: (bind
widget event function)1

A scribble example:

(defun scribble ()

(with-ltk

(let* ((canvas (make-instance ’canvas))

(down nil))

(pack canvas)

(bind canvas "<ButtonPress-1>"

(lambda (evt)

(setf down t)

(create-oval canvas

(- (event-x evt) 10) (- (event-y evt) 10)

(+ (event-x evt) 10) (+ (event-y evt) 10))))

(bind canvas "<ButtonRelease-1>" (lambda (evt)

(declare (ignore evt))

(setf down nil)))

(bind canvas "<Motion>"

1Currently the event has to be specified as a string as with Tk. In future releases
perhaps a more Lispy style might be used.

11

(lambda (evt)

(when down

(create-oval canvas

(- (event-x evt) 10) (- (event-y evt) 10)

(+ (event-x evt) 10) (+ (event-y evt) 10))))))))

5 Widgets

In this section the available widgets are listed and described.

5.1 Button

Make-instance accepts the following standard keyword arguments:
activebackground activeforeground anchor background bitmap borderwidth

cursor disabledforeground font foreground highlightbackground highlightcolor

highlightthickness image justify padx pady relief repeatdelay repeatinterval

takefocus underline wraplength

And the following widget-specific keyword arguments, explained in detail
here:

command

compound

default

height

overrelief

state

width

12

5.2 Check-button

5.3 Radio-button

5.4 Canvas

The canvas widget is used to display all kind of graphics output. Graphic
components are defined as objects like line, circle and photoimage which are
displayed on the canvas. These objects can be modified through methods to
change their appearance. The display and redrawing is handled by the canvas
widget automatically, so that the user does not need to care for that. For
convenience, ltk adds a scrolled-canvas widget which contains a canvas widget
and adds automatically scrollbars to it. You gain access to the contained
canvas with the canvas method.

A canvas widget is created by the make-canvas function. It has the
optional arguments width and height for the width and height used to
display the canvas widget. The drawing region itself can be bigger, its size is
set by the scrollregion method, which has the canvas and the dimension
as the coordinates x0 y0 and x1 y1 as parameters.

Objects to be displayed in a canvas are created via the create-xxx meth-
ods, with xxx the type of object to be created. They take the canvas as
first argument and return an index (integer) which is used as handle for the
modifying functions. A list of currently supported objects and the create
method parameters:

(create-arc canvas x0 y0 x1 y1 :start a1 :extent a2 :style style)

Creates an arc item. The arc angles are specified in starting angle and
extend of the arc. So a quater circle would have an extent of 90. Style
determines how the arc is rendered. Available styles are:

pieslice (default) Draw the ark as the slice of a pie, that is an arc
with 2 lines to the center of the circle.

chord Draw the arc as an arc and a line connecting the end points of
the arc.

arc Draw only the arc.

(create-bitmap canvas x y &key bitmap)

Creates an bitmap on the canvas, if bitmap is given, its displayed in
this item. Special configuration options are:

13

anchor anchorPos

bitmap bitmap

foreground color

background color

(create-image canvas x y &key image)

Creates an image on the canvas, if image is given, its displayed in this
image. Special configuration options are:

anchor anchorPos

image image

activeimage image

disabledimage image

(create-line canvas coords)

Coords is a list of the coordinates of the line in the form (x0 y0 x1 y1
x2 y2 ...). Lines with any number of segments can be created this way.
Special configuration options for line items (see itemconfigure) are:

arrow where one of none (no arrow), first (arrow on first point of line),
last and both.

arrowshape shape

capstyle style butt, projecting, or round.

joinstyle style bevel, miter, or round.

smooth method 0 or bezier

splinesteps number Degree of smoothness if smooth is specified.

(create-line* canvas &rest coords)

Like create-line, but the coordinates are directly given in the form
x0 y0 x1 y1 x2 y2 .

(create-oval canvas x0 y0 x1 y1)

Creates an oval fitting within the rectangular of the given coordinates.

14

(create-polygon canvas coords)

Similiar to create-line, creates a closed polygon.

Special configuration options for polygon items (see itemconfigure) are:

joinstyle style bevel, miter, or round.

smooth method 0 or bezier

splinesteps number Degree of smoothness if smooth is specified.

(create-rectangle canvas x0 y0 x1 y1)

Creates an rectangle with the given coordinates.

(create-text canvas x y text)

Creates a text displaying object at the position x,y. Text is the string
to be displayed. Special configuration options are:

anchor anchorpos

font fontname

justify justification left,right, or center.

text string

width length Line length for wrapping the text, if 0, no wrapping
happens.

(create-window canvas x y widget)

Embeds a widget into the canvas at the position (x y). The widget has
to be created before with canvas or one of the masters of canvas as its
master.

5.4.1 Managing graphical objects

(set-coords canvas item coords)

Changes the coordinate settings for any canvas item. item is the handle
returned by the create function, coords is a list with the coordinates.
With this function, objects can be moved or reshaped.

15

(scrollregion canvas x0 y0 x1 y1)

Set the scroll region of the canvas. x0 y0 are the coordinates of the
upper left, x1 y1 of the lower right corner of the scroll region.

(itemconfigure canvas item option value)

Configure one configuration option for item displayed on canvas. Op-
tions are given as strings, value is any tkobject or printable value.
Options possible for all items are:

dash pattern

activedash pattern

disableddash pattern

dashoffset offset

fill color name of a color to fill the item, or empty string for none.

activefill color

disabledfill color

outline color

activeoutline color

disabledoutline color

offset offset

outlinestipple bitmap

activeoutlinestipple bitmap

stipple bitmap

activestipple bitmap

disabledstipple bitmap

state state One of normal, disabled or hidden.

tags taglist

width outlinewidth

activewidth outlinewidth

disabledwidth outlinewidth

16

5.4.2 Example

The function canvastest demonstrates the basic canvas usage:

(defun canvastest()

(with-ltk

(let* ((sc (make-instance ’scrolled-canvas))

(c (canvas sc))

(line (create-line c (list 100 100 400 50 700 150)))

(polygon (create-polygon c (list 50 150 250 160 250

300 50 330)))

(text (create-text c 260 250 "Canvas test")))

(pack sc :expand 1 :fill :both)

(scrollregion c 0 0 800 800)

)))

Figure 3: The window created by canvastest

17

5.5 Entry

5.6 Label

5.7 Labelframe

5.8 Listbox

5.9 Menu

5.10 Message

5.11 Paned-window

5.12 Photo-image

5.13 Scale

5.14 Scrollbar

5.15 Spinbox

5.16 Text

Methods:

(append-text text txt [tag])

Appends txt to the widgets content. If given, tag is the tag to be
associated with the appended text.

(clear-text text)

Clear the content of the widget.

(text text)

Get the content of the widget.

(setf (text text) content)

Set the content of the widget.

(see text pos)

Ensure that pos is within the displayed area.

18

(tag-configure text tag option value)

Configure a tag of the text widget.

(tag-bind text tag event fun)

Bind event to the specified tag of the widget, calling fun when the event
occurs.

(save-text text filename)

Write the content of the widget to the file named by filename. Note:
filename is a string to be interpreted by tcl/tk on the client computer.

(load-text text filename)

Loads the content of the widget from the file named by filename. Note:
filename is a string to be interpreted by tcl/tk on the client computer.

5.17 Toplevel

6 Screen functions

(screen-width (&optional (w nil)))

Give the width of the screen in pixels (if w is given, of the screen the
widget w is displayed on)

(screen-height (&optional (w nil)))

Give the height of the screen in pixels (if w is given, of the screen the
widget w is displayed on).

(screen-width-mm (&optional (w nil)))

Give the width of the screen in mm (if w is given, of the screen the
widget w is displayed on)

(screen-heigth-mm (&optional (w nil)))

Give the height of the screen in mm (if w is given, of the screen the
widget w is displayed on)

19

(screen-mouse-x (&optional (w nil)))

Give x position of the mouse on screen (if w is given, of the screen the
widget w is displayed on)

(screen-mouse-y (&optional (w nil)))

Give y position of the mouse on screen (if w is given, of the screen the
widget w is displayed on)

(screen-mouse (&optional (w nil)))

Give the position of the mouse on screen as (values x y) (if w is
given, of the screen the widget w is displayed on)

(window-width (tl))

Give the width of the widget in pixels. This function can be called on
widgets as well as toplevel windows.

(window-height (tl))

Give the height of the widget in pixels. This function can be called on
widgets as well as toplevel windows.

(window-x (tl))

Give the x position of the widget in pixels.

(window-y (tl))

Give the y position of the widget in pixels.

7 Window manager functions

(wm-title toplevel title)

Set the title of the window.

(minsize toplevel width height)

Set the minsize of the window in pixels. (send-w (format nil ”wm
minsize a a a” (path w) x y)))

(maxsize toplevel width height)

Set the maximum size of the window in pixels.

20

(withdraw toplevel)

Withdraw the window from display.

(normalize toplevel)

Set the state of the window to normal display.

(iconify toplevel)

Iconify the window.

(deiconify toplevel)

De-iconify the window.

(geometry toplevel)

Read the geometry string for the window.

(set-geometry toplevel width height x y)

Set the geometry for the window.

(on-close toplevel fun)

Set fun to be called whenever the close button of the window is pressed.

(on-focus toplevel fun)

Call fun whenever the window gets the focus.

21

8 Under the hood

In this section, the technical detaills of the implementation and workings of
ltk are explained. Reading this section should not be neccessary to use ltk,
but helps understanding it and serves as a documentation for those, who
want to extend ltk.

The Tk library is a GUI library for the tcl programming language. It
is used via the program wish. Commonly, it is used as the shell to execute
tcl/tk programs. But when no script name to execute is being given, it starts
in an interactive mode, using stdin to read commands and stdout to print
the results. This can be used to enter the tcl commands manually in an
interactive session or, as used by ltk to access wish from another program.
Every Lisp I know of, offers a function to run a program in a subprocess and
to communicate to its stdin/stdout streams. The ltk function do-execute

wraps these platform-dependant functions in a generic one. Its parameter is
the name of the program to start as a string, a list with the parameters for
the program. It starts the program as a subprocess of the Lisp process and
returns a two-way stream to communicate with the program. To send some
text to the program, its just written into the stream, and likewise output
from the program can be read from the string.

All ltk widget creation functions actually create two objects: the CLOS
object to represent the widged on the Lisp side, and the corresponding Tk
object.

The root class of the ltk class hierarchy is the tkobject class. It has only
one slot: the name of the object. In tcl objects are tracked by their names,
very similiarly like symbols in Lisp. To represent all widgets the widget class
is derived from tkobject. It adds the slots for the object being the master
of the widget and the path string for the widget. As mentioned before, all
tcl objects are referenced by their name, and all tk widgets have to be put in
an hierarchy. This is represented by a path-like naming system. The name
of the root object is just “.”. Creating a frame named frame1 below it would
lead to a path name .frame1. A button called button1 placed into this
frame gets the pathname .frame1.button1. Both the naming and the path
creation is automatically handled by ltk. To create both only the reference
to the master is needed. In an after-method to the initialize-instance

method of widget, the name is created as an unique string and the pathname
is created by appending this name to the pathname of the master widget, or
“.”, if the widget has no master specified. The unique name is created by

22

appending an upcounting number to the letter “w”. Finally the method calls
the create methode upon the new widget. This create method is, where the
code interfacing with tk takes place. So to support new tk widgets, only a
subclass of widget has to be made and a create method to be written.

Internally used special variables are:

wish The stream used to communicate with wish.

callbacks The hashtable associating widget names

counter The counter variable used to give widgets unique names (wn,
where n is the counter variable, that gets incremented upon use).

event-queue If event messages are read while waiting for a data message
they are buffered in that list.

8.1 Communication

At the startup of the wish process, some tcl helper functions are defined and
then the functions in the list *INIT-WISH-HOOK*. These purpose of these
functions is to perform initialisations, e.g. loading Tk extensions.

All communication from Tk to Lisp takes place in form of lists, which are
read-able. The first element of the list is a keyword, which determines what
kind of information is following. :data is the answer to a call to a function
like reading out the content of a widget. :callback is sent upon a callback
event and :event for an event created by the bind function. This design
is neccessary, because events can be generated (and thus messages to Lisp
sent), while Lisp is waiting for a data answer. So the function read-data

can buffer those events until the requested data arrives. Only after the data
request has been fufilled, all pending events are processed.

23

8.2 Writing Ltk extensions

It is difficult to give a fully generic set of instructions how to write Ltk
extensions, as some part of it depends on the package that is to be wrapped,
but at the example of the tix extension set, a very common case can be shown.
For sake of brevity, here only the creation of a partial implementation of the
tixBalloon widget is demonstrated.

The first step is to create a Lisp package to host the extension library:

(defpackage "LTK-TIX"

(:use "COMMON-LISP"

"LTK")

(:export

"BALLOON"

"BALLOON-BIND"))

(in-package ltk-tix)

It creates a package called ltk-tix, based on common-lisp, and of course
ltk. It exports two symbols balloon for the widget class to create and
balloon-bind a function defined on this widget.

As the usage of the Tix extension requires a tcl statement to be run
before any widget is used, the proper way for this would be to put it onto
the *init-wish-hook* which is run after the startup of wish:

(eval-when (:load-toplevel)

(setf *init-wish-hook* (append *init-wish-hook*

(list (lambda ()

(send-wish "package require Tix"))

))))

Now we need to create the Lisp class that wraps the balloon widget. First
we need a class definition:

(defclass balloon (widget)

())

Unless there are some special storage needs, an empty sub-class of widget
is all one needs. What is still missing, is the Tk code to actually create the

24

widget. It is put in the initialize-instance after-method for the widget
class. This is easy to do when we look how the widget is created on the Tk
side:

tixBalloon pathname
where pathname is the path string describing the widget to be created.

This translates into Lisp code as:

(defmethod initialize-instance :after ((b balloon) &key)

(format-wish "tixBalloon ~a" (path b)))

path is an accessor function created for the widget class. The correspond-
ing slot is automatically filled in the initialize-instance method for the
widget class. Now we can create instances of the balloon widget, what is left
to do is to define the methods upon it.

We want to implement the bind command upon the balloon widget. First
lets again look at the Tk side of it:

pathname bind widget options
pathname is the path of the balloon widget, widget is another widget

for which the balloon help should be displayed and options are additional
command options. The following options should be implemented:

-msg text Sets the displayed message to text.

-balloonmsg text Sets the balloon message to text.

-statusmsg text Sets the statusbar message to text.

To implement it, we need to define a generic function: 2

(defgeneric balloon-bind (b w &key msg balloonmsg statusmsg))

We call this balloon-bind to avoid name conflicts with the function bind

defined by the Ltk package. It is a generic function of two parameters, the
balloon widget and the widget the message should be bound to. The message
is to be specified by the keyword parameters. The actual implementation of
the generic function is very straight forward and looks like this:

2It is not required to have a defgeneric definition for each generic function, as to the
standard, defmethod implicitly generates the definition if they do not exist, but as SBCL
issues a warning in this case and shipped code preferrably should not issue warnings on
compilation, I add the defgeneric statements for all generic functions I create.

25

(defmethod balloon-bind ((balloon balloon) (widget widget)

&key msg balloonmsg statusmsg)

(format-wish "~a bind ~a~@[-msg {~a}~]~

~@[-balloonmsg {~a}~]~

~@[-statusmsg {~a}~]"

(path balloon) (path widget) msg balloonmsg statusmsg))

Format wish is a wrapper around the format function, that sends the output
to wish and automaticalls flushes the output buffer, so that the statement is
directly executed by wish. It is worth noting, that the Lisp format function
has some very nice options, allowing us to elegantly implement the optional
keyword arguments. The ~@[~] format directive peeks at the next argument
in the list and only when it is non-nil, the format code inside is executed,
otherwise, this argument will be consumed. As unspecified keyword argu-
mends are set to nil, if no argument is specified this nicely fits to this format
directive. So ~@[-msg {~a}~] will output nothing, if the argument msg is
not given at the invokation of balloon-bind, or print “ -msg xxx”, where
xxx is the content specified for the msg argument.

26

9 ltk-remote

As the connection between Lisp and tcl/tk is done via a stream, it is obvious
that this connection can easily be run over a tcp socket. This allows the gui to
be displayed on computers different to the one running the Lisp program. So
ltk applications are not only network transparent accross different operating
systems, they are actually very efficiently network transparent, since the
creation of a button requires only in the magnitude of 100 bytes of network
transfer. Likewise, only the generated events are transmitted back to the
Lisp server.

The only difference for the lisp application to enable remote access is
using the with-remote-ltk port macro instead of the with-ltk macro. As
sockets are not part of the ANSI Common Lisp standard, currently only
CMUCL, SBCL and Lispworks are supported by ltk-remote.

The only thing required on the client computer is tcl/tk installed and the
remote.tcl script (which has less than 30 lines of code in it). Connection to
the lisp process is established by

wish remote.tcl hostname port

Where hostname is the name of the computer running the lisp process and
port the port on which the lisp process is listening.

10 ltk-mw

Ltk-mw is a “megawidgets” package inspired by PMW (Python Mega Wid-
gets). It contains extension widgets for Ltk written in Lisp. Besides serving
as an example, how to extend Ltk, it provides usefull new widgets listed
below.

10.1 progress

A progress-bar widget. It displays a bar which covers the width of the widget
in the given percentage. The widget has two settable accessor functions:
percentage and color.

27

10.2 history-entry

History-entry is an entry widget, that provides a history of all input. The
history can be browsed with the cursor-up and down keys. If the :command

initarg is passed to make-instance when creating an instance of the widget,
the specified function is called whenever the user pressed the return key.
The function gets passed the text in the widget and the input field of the
widget is cleared.

10.3 menu-entry

A combo-box style entry widget, that displays a menu of input content, when
the user clicks the widget. The initial content for the menu is passed as a
list to the :content initarg. To modify the menu, the generic functions
(append-item entry string) and (delete-item entry index) can be used.

28

Index

canvastest, 17

anchor, 9

append-text, 18

background, 9

bitmap, 9

borderwidth, 9

button, 12

canvas, 13

check-button, 13

clear-text, 18

configure, 9

create-arc, 13

create-bitmap, 13

create-image, 14

create-line, 14

create-line*, 14

create-oval, 14

create-polygon, 15

create-rectangle, 15

create-text, 15

create-window, 15

cursor, 9

deiconify, 21

entry, 18

foreground, 9

geometry, 21

grid, 9

hello-1, 5

hello-2, 6

iconify, 21

image, 9

installation, 3

itemconfigure, 16

justify, 9

label, 18

labelframe, 18

listbox, 18

load-text, 19

Ltk extensions, 24

ltk-mw, 27

ltk-remote, 27

maxsize, 20

menu, 18

message, 18

minsize, 20

normalize, 21

on-close, 21

on-focus, 21

orient, 10

pack, 8

padx, 9

pady, 10

paned-window, 18

photo-image, 18

radio-button, 13

relief, 10

save-text, 19

scale, 18

screen-height, 19

29

screen-heigth-mm, 19

screen-mouse, 20

screen-mouse-x, 20

screen-mouse-y, 20

screen-width, 19

screen-width-mm, 19

scrollbar, 18

scrollregion, 16

see, 18

set-coords, 15

set-geometry, 21

setf text, 18

spinbox, 18

tag-bind, 19

tag-configure, 19

takefocus, 10

text, 10, 18

toplevel, 19

underline, 10

window-height, 20

window-width, 20

window-x, 20

window-y, 20

withdraw, 21

wm-title, 20

30

	Introduction
	Installation
	Tutorial
	First steps
	A more complex example
	Running it manually
	Special variables
	Generic functions
	The pack geometry manager
	The grid geometry manager
	Configuring widgets

	Event handling
	command
	bind

	Widgets
	Button
	Check-button
	Radio-button
	Canvas
	Managing graphical objects
	Example

	Entry
	Label
	Labelframe
	Listbox
	Menu
	Message
	Paned-window
	Photo-image
	Scale
	Scrollbar
	Spinbox
	Text
	Toplevel

	Screen functions
	Window manager functions
	Under the hood
	Communication
	Writing Ltk extensions

	ltk-remote
	ltk-mw
	progress
	history-entry
	menu-entry

