FreeBSD Handbook

Abstract

Welcome to FreeBSD! This handbook covers the installation and day to day use of FreeBSD 13.1-
RELEASE and FreeBSD 12.3-RELEASE. This book is the result of ongoing work by many individuals.
Some sections might be outdated. Those interested in helping to update and expand this document
should send email to the FreeBSD documentation project mailing list.

The latest version of this book is available from the FreeBSD web site. Previous versions can be
obtained from https://docs.FreeBSD.org/doc/. The book can be downloaded in a variety of formats
and compression options from the FreeBSD download server or one of the numerous mirror sites.
Searches can be performed on the handbook and other documents on the search page.

https://lists.FreeBSD.org/subscription/freebsd-doc
https://www.FreeBSD.org/
https://docs.FreeBSD.org/doc/
https://download.freebsd.org/doc/
./mirrors#mirrors
https://www.FreeBSD.org/search/

Table of Contents

Preface
Intended Audience
Changes from the Third Edition
Changes from the Second Edition (2004)
Changes from the First Edition (2001)
Organization of This Book
Conventions used in this book
Acknowledgments
I: Getting Started
1. Introduction
1.1. Synopsis
1.2. Welcome to FreeBSD!
1.3. About the FreeBSD Project
2. Installing FreeBSD
2.1. Synopsis
2.2. Minimum Hardware Requirements
2.3. Pre-Installation Tasks
2.4. Starting the Installation
2.5. Using bsdinstall
2.6. Allocating Disk Space
2.7. Fetching Distribution Files
2.8. Accounts, Time Zone, Services and Hardening
2.9. Network Interfaces
2.10. Troubleshooting
2.11. Using the Live CD
3. FreeBSD Basics
3.1. Synopsis
3.2. Virtual Consoles and Terminals
3.3. Users and Basic Account Management
3.4. Permissions
3.5. Directory Structure
3.6. Disk Organization
3.7. Mounting and Unmounting File Systems
3.8. Processes and Daemons
3.9. Shells
3.10. Text Editors
3.11. Devices and Device Nodes
3.12. Manual Pages

10
10
10
10
11
12
15
16
17
18
18
18
22
27
27
28
28
33
36
40
56
38
71
78
79
80
80
80
83
92
96
99
104
107
110
113
114
114

4. Installing Applications: Packages and Ports 117

4.1. Synopsis 117
4.2. Overview of Software Installation 117
4.3. Finding Software 119
4.4. Using pkg for Binary Package Management 121
4.5. Using the Ports Collection 128
4.6. Building Packages with Poudriere 137
4.7. Post-Installation Considerations 141
4.8. Dealing with Broken Ports 142

5. The X Window System 143
5.1. Synopsis 143
5.2. Terminology 143
5.3. Installing Xorg 145
5.4. Xorg Configuration 145
5.5. Using Fonts in Xorg 154
5.6. The X Display Manager 159
5.7. Desktop Environments 161
5.8. Installing Compiz Fusion 164
5.9. Troubleshooting 167
5.10. Wayland on FreeBSD 172
II: Common Tasks 185
6. Desktop Applications 186
6.1. Synopsis 186
6.2. Browsers 186
6.3. Productivity 188
6.4. Document Viewers 191
6.5. Finance 193

7. Multimedia 196
7.1. Synopsis 196
7.2. Setting Up the Sound Card 196
7.3. MP3 Audio 202
7.4. Video Playback 204
7.5. TV Cards 210
7.6. MythTV 212
7.7. Image Scanners 213

8. Configuring the FreeBSD Kernel 218
8.1. Synopsis 218
8.2. Why Build a Custom Kernel? 218
8.3. Finding the System Hardware 219
8.4. The Configuration File 220
8.5. Building and Installing a Custom Kernel 222

8.6. If Something Goes Wrong 223

9. Printing 224
9.1. Quick Start 224
9.2. Printer Connections 226
9.3. Common Page Description Languages 227
9.4. Direct Printing 228
9.5. LPD (Line Printer Daemon) 229
9.6. Other Printing Systems 238

10. Linux Binary Compatibility 240
10.1. Synopsis 240
10.2. Configuring Linux Binary Compatibility 240
10.3. CentOS Base System from FreeBSD Packages 241
10.4. Debian / Ubuntu Base System with debootstrap(8) 241
10.5. Advanced Topics 241

11. WINE 246
11.1. Synopsis 246
11.2. WINE Overview & Concepts 247
11.3. Installing WINE on FreeBSD 249
11.4. Running a First WINE Program on FreeBSD 251
11.5. Configuring WINE Installation 252
11.6. WINE Management GUIs 260
11.7. WINE in Multi-User FreeBSD Installations 274
11.8. WINE on FreeBSD FAQ 277

III: System Administration 280

12. Configuration and Tuning 281
12.1. Synopsis 281
12.2. Starting Services 281
12.3. Configuring cron(8) 283
12.4. Managing Services in FreeBSD 285
12.5. Setting Up Network Interface Cards 287
12.6. Virtual Hosts 294
12.7. Configuring System Logging 294
12.8. Configuration Files 302
12.9. Tuning with sysctl(8) 305
12.10. Tuning Disks 306
12.11. Tuning Kernel Limits 309
12.12. Adding Swap Space 312
12.13. Power and Resource Management 313

13. The FreeBSD Booting Process 321
13.1. Synopsis 321
13.2. FreeBSD Boot Process 321

https://www.freebsd.org/cgi/man.cgi?query=debootstrap&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=cron&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html

13.3. Device Hints 327

13.4. Shutdown Sequence 328
14. Security 329
14.1. Synopsis 329
14.2. Introduction 329
14.3. One-time Passwords 337
14.4. TCP Wrapper 341
14.5. Kerberos 343
14.6. OpenSSL 350
14.7. VPN over IPsec 353
14.8. OpenSSH 361
14.9. Access Control Lists 367
14.10. Monitoring Third Party Security Issues 369
14.11. FreeBSD Security Advisories 370
14.12. Process Accounting 374
14.13. Resource Limits 375
14.14. Shared Administration with Sudo 378
14.15. Using doas as an alternative to sudo 380
15. Jails 382
15.1. Synopsis 382
15.2. Terms Related to Jails 383
15.3. Creating and Controlling Jails 383
15.4. Fine Tuning and Administration 386
15.5. Updating Multiple Jails 388
15.6. Managing Jails with ezjail 394
16. Mandatory Access Control 405
16.1. Synopsis 405
16.2. Key Terms 406
16.3. Understanding MAC Labels 407
16.4. Planning the Security Configuration 411
16.5. Available MAC Policies 412
16.6. User Lock Down 419
16.7. Nagios in a MAC Jail 420
16.8. Troubleshooting the MAC Framework 424
17. Security Event Auditing 426
17.1. Synopsis 426
17.2. Key Terms 426
17.3. Audit Configuration 427
17.4. Working with Audit Trails 431
18. Storage 435
18.1. Synopsis 435

18.2. Adding Disks 435

18.3. Resizing and Growing Disks 436
18.4. USB Storage Devices 439
18.5. Creating and Using CD Media 443
18.6. Creating and Using DVD Media 448
18.7. Creating and Using Floppy Disks 453
18.8. Using NTFS Disks 454
18.9. Backup Basics 456
18.10. Memory Disks 460
18.11. File System Snapshots 462
18.12. Disk Quotas 463
18.13. Encrypting Disk Partitions 467
18.14. Encrypting Swap 473
18.15. Highly Available Storage (HAST) 474
19. GEOM: Modular Disk Transformation Framework 483
19.1. Synopsis 483
19.2. RAIDO - Striping 483
19.3. RAID1 - Mirroring 486
19.4. RAID3 - Byte-level Striping with Dedicated Parity 495
19.5. Software RAID Devices 497
19.6. GEOM Gate Network 501
19.7. Labeling Disk Devices 502
19.8. UFS Journaling Through GEOM 505
20. The Z File System (ZFS) 507
20.1. What Makes ZFS Different 507
20.2. Quick Start Guide 507
20.3. zpool Administration 514
20.4. zfs Administration 535
20.5. Delegated Administration 558
20.6. Advanced Topics 558
20.7. Further Resources 561
20.8. ZFS Features and Terminology 561
21. Other File Systems 569
21.1. Synopsis 569
21.2. Linux® File Systems 569
22. Virtualization 571
22.1. Synopsis 571
22.2. FreeBSD as a Guest on Parallels Desktop for macOS® 571
22.3. FreeBSD as a Guest on VMware Fusion for macOS® 579
22.4. FreeBSD as a Guest on VirtualBox™ 585

22.5. FreeBSD as a Host with VirtualBox™ 587

22.6. FreeBSD as a Host with bhyve 589

22.7. FreeBSD as a Xen™-Host 595
23. Localization - i18n/L10n Usage and Setup 602
23.1. Synopsis 602
23.2. Using Localization 602
23.3. Finding i18n Applications 609
23.4. Locale Configuration for Specific Languages 609
24. Updating and Upgrading FreeBSD 612
24.1. Synopsis 612
24.2. FreeBSD Update 612
24.3. Updating Bootcode 620
24.4. Updating the Documentation Set 620
24.5. Tracking a Development Branch 621
24.6. Updating FreeBSD from Source 624
24.7. Tracking for Multiple Machines 632
25. DTrace 633
25.1. Synopsis 633
25.2. Implementation Differences 633
25.3. Enabling DTrace Support 634
25.4. Using DTrace 635
26. USB Device Mode / USB OTG 638
26.1. Synopsis 638
26.2. USB Virtual Serial Ports 638
26.3. USB Device Mode Network Interfaces 640
26.4. USB Virtual Storage Device 641
IV: Network Communication 643
27. Serial Communications 644
27.1. Synopsis 644
27.2. Serial Terminology and Hardware 644
27.3. Terminals 648
27.4. Dial-in Service 652
27.5. Dial-out Service 656
27.6. Setting Up the Serial Console 659
28. PPP 665
28.1. Synopsis 665
28.2. Configuring PPP 665
28.3. Troubleshooting PPP Connections 673
28.4. Using PPP over Ethernet (PPPoE) 677
28.5. Using PPP over ATM (PPP0oA) 678
29. Electronic Mail 682
29.1. Synopsis 682

29.2. Mail Components 682

29.3. Sendmail Configuration Files 684
29.4. Changing the Mail Transfer Agent 686
29.5. Troubleshooting 689
29.6. Advanced Topics 691
29.7. Setting Up to Send Only 693
29.8. Using Mail with a Dialup Connection 694
29.9. SMTP Authentication 695
29.10. Mail User Agents 697
29.11. Using fetchmail 704
29.12. Using procmail 705
30. Network Servers 707
30.1. Synopsis 707
30.2. The inetd Super-Server 707
30.3. Network File System (NFS) 711
30.4. Network Information System (NIS) 715
30.5. Lightweight Directory Access Protocol (LDAP) 730
30.6. Dynamic Host Configuration Protocol (DHCP) 739
30.7. Domain Name System (DNS) 743
30.8. Apache HTTP Server 745
30.9. File Transfer Protocol (FTP) 752
30.10. File and Print Services for Microsoft® Windows® Clients (Samba) 753
30.11. Clock Synchronization with NTP 756
30.12. iSCSI Initiator and Target Configuration 759
31. Firewalls 765
31.1. Synopsis 765
31.2. Firewall Concepts 766
31.3.PF 767
31.4. IPFW 784
31.5. IPFILTER (IPF) 800
31.6. Blacklistd 813
32. Advanced Networking 818
32.1. Synopsis 818
32.2. Gateways and Routes 818
32.3. Wireless Networking 824
32.4. USB Tethering 845
32.5. Bluetooth 846
32.6. Bridging 855
32.7. Link Aggregation and Failover 862
32.8. Diskless Operation with PXE 868

32.9.IPv6 873

32.10. Common Address Redundancy Protocol (CARP)
32.11. VLANS
V: Appendices
Appendix A: Obtaining FreeBSD
A.1. Mirrors
A.2. Using Git
A.3. Using Subversion
A.4. CD and DVD Sets
Appendix B: Bibliography
B.1. Books Specific to FreeBSD
B.2. Users' Guides
B.3. Administrators' Guides
B.4. Programmers' Guides
B.5. Operating System Internals
B.6. Security Reference
B.7. Hardware Reference
B.8. UNIX® History
B.9. Periodicals, Journals, and Magazines
Appendix C: Resources on the Internet
C.1. Websites
C.2. Mailing Lists
C.3. Usenet Newsgroups
Appendix D: OpenPGP Keys
D.1. Officers
FreeBSD Glossary
Colophon

878
881
883
884
884
886
889
891
893
893
894
894
894
895
896
896
896
897
898
898
898
917
919
919
928
948

Preface

Intended Audience

The FreeBSD newcomer will find that the first section of this book guides the user through the
FreeBSD installation process and gently introduces the concepts and conventions that underpin
UNIX®. Working through this section requires little more than the desire to explore, and the ability
to take on board new concepts as they are introduced.

Once you have traveled this far, the second, far larger, section of the Handbook is a comprehensive
reference to all manner of topics of interest to FreeBSD system administrators. Some of these
chapters may recommend that you do some prior reading, and this is noted in the synopsis at the
beginning of each chapter.

For a list of additional sources of information, please see Bibliography.

Changes from the Third Edition

The current online version of the Handbook represents the cumulative effort of many hundreds of
contributors over the past 10 years. The following are some of the significant changes since the two
volume third edition was published in 2004:

* WINE has been added with information about how to run Windows® applications on FreeBSD.

* DTrace has been added with information about the powerful DTrace performance analysis tool.

* Other File Systems has been added with information about non-native file systems in FreeBSD,
such as ZFS from Sun™.

» Security Event Auditing has been added to cover the new auditing capabilities in FreeBSD and
explain its use.

 Virtualization has been added with information about installing FreeBSD on virtualization
software.

* Installing FreeBSD has been added to cover installation of FreeBSD using the new installation
utility, bsdinstall.

Changes from the Second Edition (2004)

The third edition was the culmination of over two years of work by the dedicated members of the
FreeBSD Documentation Project. The printed edition grew to such a size that it was necessary to
publish as two separate volumes. The following are the major changes in this new edition:

* Configuration and Tuning has been expanded with new information about the ACPI power and
resource management, the cron system utility, and more kernel tuning options.

» Security has been expanded with new information about virtual private networks (VPNs), file
system access control lists (ACLs), and security advisories.

* Mandatory Access Control is a new chapter with this edition. It explains what MAC is and how

10

../bibliography/index.html#bibliography
../wine/index.html#wine
../dtrace/index.html#dtrace
../filesystems/index.html#filesystems
../audit/index.html#audit
../virtualization/index.html#virtualization
../bsdinstall/index.html#bsdinstall
../config/index.html#config-tuning
../security/index.html#security
../mac/index.html#mac

this mechanism can be used to secure a FreeBSD system.

Storage has been expanded with new information about USB storage devices, file system
snapshots, file system quotas, file and network backed filesystems, and encrypted disk
partitions.

A troubleshooting section has been added to PPP.

Electronic Mail has been expanded with new information about using alternative transport
agents, SMTP authentication, UUCP, fetchmail, procmail, and other advanced topics.

Network Servers is all new with this edition. This chapter includes information about setting up
the Apache HTTP Server, ftpd, and setting up a server for Microsoft® Windows® clients with
Samba. Some sections from Advanced Networking were moved here to improve the
presentation.

Advanced Networking has been expanded with new information about using Bluetooth®
devices with FreeBSD, setting up wireless networks, and Asynchronous Transfer Mode (ATM)
networking.

A glossary has been added to provide a central location for the definitions of technical terms
used throughout the book.

A number of aesthetic improvements have been made to the tables and figures throughout the
book.

Changes from the First Edition (2001)

The second edition was the culmination of over two years of work by the dedicated members of the
FreeBSD Documentation Project. The following were the major changes in this edition:

A complete Index has been added.
All ASCII figures have been replaced by graphical diagrams.

A standard synopsis has been added to each chapter to give a quick summary of what
information the chapter contains, and what the reader is expected to know.

The content has been logically reorganized into three parts: "Getting Started", "System
Administration”, and "Appendices".

FreeBSD Basics has been expanded to contain additional information about processes,
daemons, and signals.

Installing Applications: Packages and Ports has been expanded to contain additional
information about binary package management.

The X Window System has been completely rewritten with an emphasis on using modern
desktop technologies such as KDE and GNOME on XFree86™ 4.X.

The FreeBSD Booting Process has been expanded.

Storage has been written from what used to be two separate chapters on "Disks" and "Backups".
We feel that the topics are easier to comprehend when presented as a single chapter. A section
on RAID (both hardware and software) has also been added.

Serial Communications has been completely reorganized and updated for FreeBSD 4.X/5.X.

11

../disks/index.html#disks
../ppp-and-slip/index.html#ppp-and-slip
../mail/index.html#mail
../network-servers/index.html#network-servers
../advanced-networking/index.html#advanced-networking
../advanced-networking/index.html#advanced-networking
../basics/index.html#basics
../ports/index.html#ports
../x11/index.html#x11
../boot/index.html#boot
../disks/index.html#disks
../serialcomms/index.html#serialcomms

PPP has been substantially updated.
* Many new sections have been added to Advanced Networking.
* Electronic Mail has been expanded to include more information about configuring sendmail.

e Linux® Binary Compatibility has been expanded to include information about installing
Oracle® and SAP® R/3®.

The following new topics are covered in this second edition:
o Configuration and Tuning.

o Multimedia.

Organization of This Book

This book is split into five logically distinct sections. The first section, Getting Started, covers the
installation and basic usage of FreeBSD. It is expected that the reader will follow these chapters in
sequence, possibly skipping chapters covering familiar topics. The second section, Common Tasks,
covers some frequently used features of FreeBSD. This section, and all subsequent sections, can be
read out of order. Each chapter begins with a succinct synopsis that describes what the chapter
covers and what the reader is expected to already know. This is meant to allow the casual reader to
skip around to find chapters of interest. The third section, System Administration, covers
administration topics. The fourth section, Network Communication, covers networking and server
topics. The fifth section contains appendices of reference information.

Introduction

Introduces FreeBSD to a new user. It describes the history of the FreeBSD Project, its goals and
development model.

Installing FreeBSD

Walks a user through the entire installation process of FreeBSD 9.x and later using bsdinstall.

FreeBSD Basics

Covers the basic commands and functionality of the FreeBSD operating system. If you are
familiar with Linux® or another flavor of UNIX® then you can probably skip this chapter.

Installing Applications: Packages and Ports

Covers the installation of third-party software with both FreeBSD’s innovative "Ports Collection”
and standard binary packages.

The X Window System

Describes the X Window System in general and using X11 on FreeBSD in particular. Also
describes common desktop environments such as KDE and GNOME.

Desktop Applications

Lists some common desktop applications, such as web browsers and productivity suites, and
describes how to install them on FreeBSD.

12

../ppp-and-slip/index.html#ppp-and-slip
../advanced-networking/index.html#advanced-networking
../mail/index.html#mail
../linuxemu/index.html#linuxemu
../config/index.html#config-tuning
../multimedia/index.html#multimedia
../introduction/index.html#introduction
../bsdinstall/index.html#bsdinstall
../basics/index.html#basics
../ports/index.html#ports
../x11/index.html#x11
../desktop/index.html#desktop

Multimedia

Shows how to set up sound and video playback support for your system. Also describes some
sample audio and video applications.

Configuring the FreeBSD Kernel

Explains why you might need to configure a new kernel and provides detailed instructions for
configuring, building, and installing a custom kernel.

Printing
Describes managing printers on FreeBSD, including information about banner pages, printer
accounting, and initial setup.

Linux® Binary Compatibility
Describes the Linux® compatibility features of FreeBSD. Also provides detailed installation
instructions for many popular Linux® applications such as Oracle® and Mathematica®.

Configuration and Tuning

Describes the parameters available for system administrators to tune a FreeBSD system for
optimum performance. Also describes the various configuration files used in FreeBSD and
where to find them.

The FreeBSD Booting Process

Describes the FreeBSD boot process and explains how to control this process with configuration
options.

Security

Describes many different tools available to help keep your FreeBSD system secure, including
Kerberos, IPsec and OpenSSH.

Jails
Describes the jails framework, and the improvements of jails over the traditional chroot support
of FreeBSD.

Mandatory Access Control

Explains what Mandatory Access Control (MAC) is and how this mechanism can be used to
secure a FreeBSD system.

Security Event Auditing

Describes what FreeBSD Event Auditing is, how it can be installed, configured, and how audit
trails can be inspected or monitored.

Storage

Describes how to manage storage media and filesystems with FreeBSD. This includes physical
disks, RAID arrays, optical and tape media, memory-backed disks, and network filesystems.

GEOM: Modular Disk Transformation Framework

Describes what the GEOM framework in FreeBSD is and how to configure various supported
RAID levels.

13

../multimedia/index.html#multimedia
../kernelconfig/index.html#kernelconfig
../printing/index.html#printing
../linuxemu/index.html#linuxemu
../config/index.html#config-tuning
../boot/index.html#boot
../security/index.html#security
../jails/index.html#jails
../mac/index.html#mac
../audit/index.html#audit
../disks/index.html#disks
../geom/index.html#geom

Other File Systems
Examines support of non-native file systems in FreeBSD, like the Z File System from Sun™.

Virtualization

Describes what virtualization systems offer, and how they can be used with FreeBSD.

Localization - i18n/L10n Usage and Setup

Describes how to use FreeBSD in languages other than English. Covers both system and
application level localization.

Updating and Upgrading FreeBSD

Explains the differences between FreeBSD-STABLE, FreeBSD-CURRENT, and FreeBSD releases.
Describes which users would benefit from tracking a development system and outlines that
process. Covers the methods users may take to update their system to the latest security release.

DTrace

Describes how to configure and use the DTrace tool from Sun™ in FreeBSD. Dynamic tracing can
help locate performance issues, by performing real time system analysis.

Serial Communications

Explains how to connect terminals and modems to your FreeBSD system for both dial in and dial
out connections.

PPP

Describes how to use PPP to connect to remote systems with FreeBSD.

Electronic Mail

Explains the different components of an email server and dives into simple configuration topics
for the most popular mail server software: sendmail.

Network Servers

Provides detailed instructions and example configuration files to set up your FreeBSD machine
as a network filesystem server, domain name server, network information system server, or
time synchronization server.

Firewalls

Explains the philosophy behind software-based firewalls and provides detailed information
about the configuration of the different firewalls available for FreeBSD.

Advanced Networking

Describes many networking topics, including sharing an Internet connection with other
computers on your LAN, advanced routing topics, wireless networking, Bluetooth®, ATM, IPv6,
and much more.

Obtaining FreeBSD

Lists different sources for obtaining FreeBSD media on CDROM or DVD as well as different sites
on the Internet that allow you to download and install FreeBSD.

14

../filesystems/index.html#filesystems
../virtualization/index.html#virtualization
../l10n/index.html#l10n
../cutting-edge/index.html#updating-upgrading
../dtrace/index.html#dtrace
../serialcomms/index.html#serialcomms
../ppp-and-slip/index.html#ppp-and-slip
../mail/index.html#mail
../network-servers/index.html#network-servers
../firewalls/index.html#firewalls
../advanced-networking/index.html#advanced-networking
../mirrors/index.html#mirrors

Bibliography
This book touches on many different subjects that may leave you hungry for a more detailed
explanation. The bibliography lists many excellent books that are referenced in the text.

Resources on the Internet

Describes the many forums available for FreeBSD users to post questions and engage in
technical conversations about FreeBSD.

OpenPGP Keys
Lists the PGP fingerprints of several FreeBSD Developers.

Conventions used in this book

To provide a consistent and easy to read text, several conventions are followed throughout the
book.

Typographic Conventions

Italic

An italic font is used for filenames, URLs, emphasized text, and the first usage of technical terms.

Monospace

A monospaced font is used for error messages, commands, environment variables, names of ports,
hostnames, user names, group names, device names, variables, and code fragments.

Bold

A bold font is used for applications, commands, and keys.

User Input

Keys are shown in bold to stand out from other text. Key combinations that are meant to be typed
simultaneously are shown with + between the keys, such as:

Ctrl + Alt + Del

Meaning the user should type the Ctrl, Alt, and Del keys at the same time.

Keys that are meant to be typed in sequence will be separated with commas, for example:
Ctr1l + X, Ctr1 + S

Would mean that the user is expected to type the Ctrl and X keys simultaneously and then to type
the Ctrl and S keys simultaneously.

Examples

Examples starting with C:\> indicate a MS-DOS® command. Unless otherwise noted, these
commands may be executed from a "Command Prompt" window in a modern Microsoft®
Windows® environment.

15

../bibliography/index.html#bibliography
../eresources/index.html#eresources
../pgpkeys/index.html#pgpkeys

C:\> tools\fdimage floppies\kern.flp A:

Examples starting with # indicate a command that must be invoked as the superuser in FreeBSD.
You can login as root to type the command, or login as your normal account and use su(1) to gain
superuser privileges.

dd if=kern.flp of=/dev/fd0

Examples starting with % indicate a command that should be invoked from a normal user account.
Unless otherwise noted, C-shell syntax is used for setting environment variables and other shell
commands.

% top

Acknowledgments

The book you are holding represents the efforts of many hundreds of people around the world.
Whether they sent in fixes for typos, or submitted complete chapters, all the contributions have
been useful.

Several companies have supported the development of this document by paying authors to work on
it full-time, paying for publication, etc. In particular, BSDi (subsequently acquired by Wind River
Systems) paid members of the FreeBSD Documentation Project to work on improving this book full
time leading up to the publication of the first printed edition in March 2000 (ISBN 1-57176-241-8).
Wind River Systems then paid several additional authors to make a number of improvements to the
print-output infrastructure and to add additional chapters to the text. This work culminated in the
publication of the second printed edition in November 2001 (ISBN 1-57176-303-1). In 2003-2004,
FreeBSD Mall, Inc, paid several contributors to improve the Handbook in preparation for the third
printed edition. The third printed edition has been split into two volumes. Both volumes have been
published as The FreeBSD Handbook 3rd Edition Volume 1: User Guide (ISBN 1-57176-327-9) and
The FreeBSD Handbook 3rd Edition Volume 2: Administrators Guide (ISBN 1-57176-328-7).

16

https://www.freebsd.org/cgi/man.cgi?query=su&sektion=1&format=html
http://www.windriver.com
http://www.windriver.com
http://www.freebsdmall.com

Part I: Getting Started

This part of the handbook is for users and administrators who are new to FreeBSD. These chapters:

e Introduce FreeBSD.
* Guide readers through the installation process.
» Teach UNIX® basics and fundamentals.

» Show how to install the wealth of third party applications available for FreeBSD.

Introduce X, the UNIX® windowing system, and detail how to configure a desktop environment
that makes users more productive.

The number of forward references in the text have been kept to a minimum so that this section can
be read from front to back with minimal page flipping.

17

Chapter 1. Introduction

1.1. Synopsis

Thank you for your interest in FreeBSD! The following chapter covers various aspects of the
FreeBSD Project, such as its history, goals, development model, and so on.

After reading this chapter you will know:

How FreeBSD relates to other computer operating systems.
The history of the FreeBSD Project.

The goals of the FreeBSD Project.

The basics of the FreeBSD open-source development model.

And of course: where the name "FreeBSD" comes from.

1.2. Welcome to FreeBSD!

FreeBSD is an Open Source, standards-compliant Unix-like operating system for x86 (both 32 and 64
bit), ARM®, AArch64, RISC-V®, MIPS®, POWER®, PowerPC®, and Sun UltraSPARC® computers. It
provides all the features that are nowadays taken for granted, such as preemptive multitasking,
memory protection, virtual memory, multi-user facilities, SMP support, all the Open Source
development tools for different languages and frameworks, and desktop features centered around
X Window System, KDE, or GNOME. Its particular strengths are:

18

Liberal Open Source license, which grants you rights to freely modify and extend its source code
and incorporate it in both Open Source projects and closed products without imposing
restrictions typical to copyleft licenses, as well as avoiding potential license incompatibility
problems.

Strong TCP/IP networking - FreeBSD implements industry standard protocols with ever
increasing performance and scalability. This makes it a good match in both server, and
routing/firewalling roles - and indeed many companies and vendors use it precisely for that
purpose.

Fully integrated OpenZFS support, including root-on-ZFS, ZFS Boot Environments, fault
management, administrative delegation, support for jails, FreeBSD specific documentation, and
system installer support.

Extensive security features, from the Mandatory Access Control framework to Capsicum
capability and sandbox mechanisms.

Over 30 thousand prebuilt packages for all supported architectures, and the Ports Collection
which makes it easy to build your own, customized ones.

Documentation - in addition to Handbook and books from different authors that cover topics
ranging from system administration to kernel internals, there are also the man(1) pages, not
only for userspace daemons, utilities, and configuration files, but also for kernel driver APIs
(section 9) and individual drivers (section 4).

https://www.freebsd.org/cgi/man.cgi?query=man&sektion=1&format=html

» Simple and consistent repository structure and build system - FreeBSD uses a single repository
for all of its components, both kernel and userspace. This, along with an unified and easy to
customize build system and a well thought out development process makes it easy to integrate
FreeBSD with build infrastructure for your own product.

» Staying true to Unix philosophy, preferring composability instead of monolithic "all in one"
daemons with hardcoded behavior.

* Binary compatibility with Linux, which makes it possible to run many Linux binaries without
the need for virtualisation.

FreeBSD is based on the 4.4BSD-Lite release from Computer Systems Research Group (CSRG) at the
University of California at Berkeley, and carries on the distinguished tradition of BSD systems
development. In addition to the fine work provided by CSRG, the FreeBSD Project has put in many
thousands of man-hours into extending the functionality and fine-tuning the system for maximum
performance and reliability in real-life load situations. FreeBSD offers performance and reliability
on par with other Open Source and commercial offerings, combined with cutting-edge features not
available anywhere else.

1.2.1. What Can FreeBSD Do?

The applications to which FreeBSD can be put are truly limited only by your own imagination.
From software development to factory automation, inventory control to azimuth correction of
remote satellite antennae; if it can be done with a commercial UNIX® product then it is more than
likely that you can do it with FreeBSD too! FreeBSD also benefits significantly from literally
thousands of high quality applications developed by research centers and universities around the
world, often available at little to no cost.

Because the source code for FreeBSD itself is freely available, the system can also be customized to
an almost unheard of degree for special applications or projects, and in ways not generally possible
with operating systems from most major commercial vendors. Here is just a sampling of some of
the applications in which people are currently using FreeBSD:

* Internet Services: The robust TCP/IP networking built into FreeBSD makes it an ideal platform
for a variety of Internet services such as:
o Web servers
o IPv4 and IPv6 routing
o Firewalls and NAT ("IP masquerading") gateways
o FTP servers
- Email servers
> And more...

* Education: Are you a student of computer science or a related engineering field? There is no
better way of learning about operating systems, computer architecture and networking than the
hands on, under the hood experience that FreeBSD can provide. A number of freely available
CAD, mathematical and graphic design packages also make it highly useful to those whose
primary interest in a computer is to get other work done!

* Research: With source code for the entire system available, FreeBSD is an excellent platform for

19

research in operating systems as well as other branches of computer science. FreeBSD’s freely
available nature also makes it possible for remote groups to collaborate on ideas or shared
development without having to worry about special licensing agreements or limitations on
what may be discussed in open forums.

Networking: Need a new router? A name server (DNS)? A firewall to keep people out of your
internal network? FreeBSD can easily turn that unused PC sitting in the corner into an
advanced router with sophisticated packet-filtering capabilities.

Embedded: FreeBSD makes an excellent platform to build embedded systems upon. With
support for the ARM®, MIPS® and PowerPC® platforms, coupled with a robust network stack,
cutting edge features and the permissive BSD license FreeBSD makes an excellent foundation
for building embedded routers, firewalls, and other devices.

Desktop: FreeBSD makes a fine choice for an inexpensive desktop solution using the freely
available X11 server. FreeBSD offers a choice from many open-source desktop environments,
including the standard GNOME and KDE graphical user interfaces. FreeBSD can even boot
"diskless" from a central server, making individual workstations even cheaper and easier to
administer.

Software Development: The basic FreeBSD system comes with a full suite of development tools
including a full C/C++ compiler and debugger suite. Support for many other languages are also
available through the ports and packages collection.

FreeBSD is available to download free of charge, or can be obtained on either CD-ROM or DVD.
Please see Obtaining FreeBSD for more information about obtaining FreeBSD.

1.2.2. Who Uses FreeBSD?

FreeBSD has been known for its web serving capabilities - sites that run on FreeBSD include Hacker
News, Netcraft, NetEase, Netflix, Sina, Sony Japan, Rambler, Yahoo!, and Yandex.

FreeBSD’s advanced features, proven security, predictable release cycle, and permissive license
have led to its use as a platform for building many commercial and open source appliances,
devices, and products. Many of the world’s largest IT companies use FreeBSD:

20

Apache - The Apache Software Foundation runs most of its public facing infrastructure,
including possibly one of the largest SVN repositories in the world with over 1.4 million
comimits, on FreeBSD.

Apple - OS X borrows heavily from FreeBSD for the network stack, virtual file system, and many
userland components. Apple iOS also contains elements borrowed from FreeBSD.

Cisco - IronPort network security and anti-spam appliances run a modified FreeBSD kernel.

Citrix - The NetScaler line of security appliances provide layer 4-7 load balancing, content
caching, application firewall, secure VPN, and mobile cloud network access, along with the
power of a FreeBSD shell.

Dell EMC Isilon - Isilon’s enterprise storage appliances are based on FreeBSD. The extremely
liberal FreeBSD license allowed Isilon to integrate their intellectual property throughout the
kernel and focus on building their product instead of an operating system.

Quest KACE - The KACE system management appliances run FreeBSD because of its reliability,

https://docs.freebsd.org/en/books/faq/#bsd-license-restrictions
../mirrors/index.html#mirrors
https://news.ycombinator.com/
https://news.ycombinator.com/
http://www.netcraft.com/
http://www.163.com/
https://signup.netflix.com/openconnect
http://www.sina.com/
http://www.sony.co.jp/
http://www.rambler.ru/
http://www.yahoo.com/
http://www.yandex.ru/
http://www.apache.org/
http://www.apple.com/
http://www.cisco.com/
http://www.citrix.com/
https://www.emc.com/isilon
http://www.quest.com/KACE

scalability, and the community that supports its continued development.
 iXsystems - The TrueNAS line of unified storage appliances is based on FreeBSD.

* Juniper - The JunOS operating system that powers all Juniper networking gear (including
routers, switches, and security and networking appliances) is based on FreeBSD. Juniper is one
of many vendors that showcases the symbiotic relationship between the project and vendors of
commercial products. Improvements generated at Juniper are upstreamed into FreeBSD to
reduce the complexity of integrating new features from FreeBSD back into JunOS in the future.

* McAfee - SecurOS, the basis of McAfee enterprise firewall products including Sidewinder is
based on FreeBSD.

* NetApp - The Data ONTAP GX line of storage appliances are based on FreeBSD. In addition,
NetApp has contributed back many features, including the new BSD licensed hypervisor, bhyve.

» Netflix - The OpenConnect appliance that Netflix uses to stream movies to its customers is based
on FreeBSD. Netflix has made extensive contributions to the codebase and works to maintain a
zero delta from mainline FreeBSD. Netflix OpenConnect appliances are responsible for
delivering more than 32% of all Internet traffic in North America.

» Sandvine - Sandvine uses FreeBSD as the basis of their high performance real-time network
processing platforms that make up their intelligent network policy control products.

* Sony - The PlayStation Vita, PlayStation 4, and PlayStation 5 gaming consoles run a modified
version of FreeBSD.

* Sophos - The Sophos Email Appliance product is based on a hardened FreeBSD and scans
inbound mail for spam and viruses, while also monitoring outbound mail for malware as well
as the accidental loss of sensitive information.

* Spectra Logic - The nTier line of archive grade storage appliances run FreeBSD and OpenZFS.

» Stormshield - Stormshield Network Security appliances are based on a hardened version of
FreeBSD. The BSD license allows them to integrate their own intellectual property with the
system while returning a great deal of interesting development to the community.

* The Weather Channel - The IntelliStar appliance that is installed at each local cable provider’s
headend and is responsible for injecting local weather forecasts into the cable TV network’s
programming runs FreeBSD.

 Verisign - Verisign is responsible for operating the .com and .net root domain registries as well
as the accompanying DNS infrastructure. They rely on a number of different network operating
systems including FreeBSD to ensure there is no common point of failure in their infrastructure.

» Voxer - Voxer powers their mobile voice messaging platform with ZFS on FreeBSD. Voxer
switched from a Solaris derivative to FreeBSD because of its superior documentation, larger
and more active community, and more developer friendly environment. In addition to critical
features like ZFS and DTrace, FreeBSD also offers TRIM support for ZFS.

* Fudo Security - The FUDO security appliance allows enterprises to monitor, control, record, and
audit contractors and administrators who work on their systems. Based on all of the best
security features of FreeBSD including ZFS, GELIL, Capsicum, HAST, and auditdistd.

FreeBSD has also spawned a number of related open source projects:

* BSD Router - A FreeBSD based replacement for large enterprise routers, designed to run on

21

http://www.ixsystems.com/
http://www.juniper.net/
http://www.mcafee.com/
http://www.netapp.com/
http://www.netflix.com/
http://www.sandvine.com/
http://www.sony.com/
http://www.sophos.com/
http://www.spectralogic.com/
https://www.stormshield.com
http://www.weather.com/
http://www.verisign.com/
http://www.voxer.com/
https://fudosecurity.com/en/
http://bsdrp.net/

standard PC hardware.

* TrueNAS is a Network Attached Storage (NAS) software that shares and protects data from
modern-day threats like ransomware and malware. TrueNAS makes it easy for users and client
devices to access shared data through virtually any sharing protocol.

* GhostBSD is derived from FreeBSD, uses the GTK environment to provide a beautiful look and
comfortable experience on the modern BSD platform offering a natural and native UNIX® work
environment.

* mfsBSD - A toolkit for building a FreeBSD system image that runs entirely from memory.
* XigmaNAS - A file server distribution based on FreeBSD with a PHP powered web interface.

* OPNSense is an open source, easy-to-use and easy-to-build FreeBSD based firewall and routing
platform. OPNsense includes most of the features available in expensive commercial firewalls,
and more in many cases. It brings the rich feature set of commercial offerings with the benefits
of open and verifiable sources.

* MidnightBSD is a FreeBSD derived operating system developed with desktop users in mind. It
includes all the software you’d expect for your daily tasks: mail, web browsing, word
processing, gaming, and much more.

* NomadBSD is a persistent live system for USB flash drives, based on FreeBSD. Together with
automatic hardware detection and setup, it is configured to be used as a desktop system that
works out of the box, but can also be used for data recovery, for educational purposes, or to test
FreeBSD’s hardware compatibility.

* pfSense - A firewall distribution based on FreeBSD with a huge array of features and extensive
IPv6 support.

* ZRouter - An open source alternative firmware for embedded devices based on FreeBSD.
Designed to replace the proprietary firmware on off-the-shelf routers.

A list of testimonials from companies basing their products and services on FreeBSD can be found
at the FreeBSD Foundation website. Wikipedia also maintains a list of products based on FreeBSD.

1.3. About the FreeBSD Project

The following section provides some background information on the project, including a brief
history, project goals, and the development model of the project.

1.3.1. A Brief History of FreeBSD

The FreeBSD Project had its genesis in the early part of 1993, partially as the brainchild of the
Unofficial 386BSDPatchkit’s last 3 coordinators: Nate Williams, Rod Grimes and Jordan Hubbard.

The original goal was to produce an intermediate snapshot of 386BSD in order to fix a number of
problems that the patchkit mechanism was just not capable of solving. The early working title for
the project was 386BSD 0.5 or 386BSD Interim in reference of that fact.

386BSD was Bill Jolitz’s operating system, which had been up to that point suffering rather severely
from almost a year’s worth of neglect. As the patchkit swelled ever more uncomfortably with each
passing day, they decided to assist Bill by providing this interim "cleanup" snapshot. Those plans

22

https://www.truenas.com/
https://ghostbsd.org/
http://mfsbsd.vx.sk/
https://xigmanas.com/
http://www.opnsense.org/
https://www.midnightbsd.org
https://www.nomadbsd.org
http://www.pfsense.org/
http://zrouter.org/
https://www.freebsdfoundation.org/about/testimonials/
https://en.wikipedia.org/wiki/List_of_products_based_on_FreeBSD

came to a rude halt when Bill Jolitz suddenly decided to withdraw his sanction from the project
without any clear indication of what would be done instead.

The trio thought that the goal remained worthwhile, even without Bill’s support, and so they
adopted the name "FreeBSD" coined by David Greenman. The initial objectives were set after
consulting with the system’s current users and, once it became clear that the project was on the
road to perhaps even becoming a reality, Jordan contacted Walnut Creek CDROM with an eye
toward improving FreeBSD’s distribution channels for those many unfortunates without easy
access to the Internet. Walnut Creek CDROM not only supported the idea of distributing FreeBSD on
CD but also went so far as to provide the project with a machine to work on and a fast Internet
connection. Without Walnut Creek CDROM’s almost unprecedented degree of faith in what was, at
the time, a completely unknown project, it is quite unlikely that FreeBSD would have gotten as far,
as fast, as it has today.

The first CD-ROM (and general net-wide) distribution was FreeBSD 1.0, released in December of
1993. This was based on the 4.3BSD-Lite ("Net/2") tape from U.C. Berkeley, with many components
also provided by 386BSD and the Free Software Foundation. It was a fairly reasonable success for a
first offering, and they followed it with the highly successful FreeBSD 1.1 release in May of 1994.

Around this time, some rather unexpected storm clouds formed on the horizon as Novell and U.C.
Berkeley settled their long-running lawsuit over the legal status of the Berkeley Net/2 tape. A
condition of that settlement was U.C. Berkeley’s concession that large parts of Net/2 were
"encumbered" code and the property of Novell, who had in turn acquired it from AT&T some time
previously. What Berkeley got in return was Novell’s "blessing" that the 4.4BSD-Lite release, when it
was finally released, would be declared unencumbered and all existing Net/2 users would be
strongly encouraged to switch. This included FreeBSD, and the project was given until the end of
July 1994 to stop shipping its own Net/2 based product. Under the terms of that agreement, the
project was allowed one last release before the deadline, that release being FreeBSD 1.1.5.1.

FreeBSD then set about the arduous task of literally re-inventing itself from a completely new and
rather incomplete set of 4.4BSD-Lite bits. The "Lite" releases were light in part because Berkeley’s
CSRG had removed large chunks of code required for actually constructing a bootable running
system (due to various legal requirements) and the fact that the Intel port of 4.4 was highly
incomplete. It took the project until November of 1994 to make this transition, and in December it
released FreeBSD 2.0 to the world. Despite being still more than a little rough around the edges, the
release was a significant success and was followed by the more robust and easier to install FreeBSD
2.0.5 release in June of 1995.

Since that time, FreeBSD has made a series of releases each time improving the stability, speed, and
feature set of the previous version.

For now, long-term development projects continue to take place in the 14.0-CURRENT (main)
branch, and snapshot releases of 14.0 are continually made available from the snapshot server as
work progresses.

1.3.2. FreeBSD Project Goals

The goals of the FreeBSD Project are to provide software that may be used for any purpose and
without strings attached. Many of us have a significant investment in the code (and project) and

23

https://download.freebsd.org/snapshots/

would certainly not mind a little financial compensation now and then, but we are definitely not
prepared to insist on it. We believe that our first and foremost "mission" is to provide code to any
and all comers, and for whatever purpose, so that the code gets the widest possible use and
provides the widest possible benefit. This is, I believe, one of the most fundamental goals of Free
Software and one that we enthusiastically support.

That code in our source tree which falls under the GNU General Public License (GPL) or Library
General Public License (LGPL) comes with slightly more strings attached, though at least on the side
of enforced access rather than the usual opposite. Due to the additional complexities that can
evolve in the commercial use of GPL software we do, however, prefer software submitted under the
more relaxed BSD license when it is a reasonable option to do so.

1.3.3. The FreeBSD Development Model

The development of FreeBSD is a very open and flexible process, being literally built from the
contributions of thousands of people around the world, as can be seen from our list of contributors.
FreeBSD’s development infrastructure allows these thousands of contributors to collaborate over
the Internet. We are constantly on the lookout for new volunteers, and those interested in
becoming more closely involved should consult the article on Contributing to FreeBSD.

Useful things to know about the FreeBSD Project and its development process, whether working
independently or in close cooperation:

The Git repositories

For several years, the central source tree for FreeBSD was maintained by CVS (Concurrent
Versions System), a freely available source code control tool. In June 2008, the Project switched
to using SVN (Subversion). The switch was deemed necessary, as the technical limitations
imposed by CVS were becoming obvious due to the rapid expansion of the source tree and the
amount of history already stored. The Documentation Project and Ports Collection repositories
also moved from CVS to SVN in May 2012 and July 2012, respectively. In December 2020, the
Project migrated Source and Documentation repositories to Git, with Ports following suit in April
2021. Please refer to the Obtaining the Source section for more information on obtaining the
FreeBSD src/ repository and Using the Ports Collection for details on obtaining the FreeBSD
Ports Collection.

The committers list

The committers are the people who have push access to the Git repository, and are authorized to
make modifications to the FreeBSD source (the term "committer" comes from commit, the source
control command which is used to bring new changes into the repository). Anyone can submit a
bug to the Bug Database. Before submitting a bug report, the FreeBSD mailing lists, IRC channels,
or forums can be used to help verify that an issue is actually a bug.

The FreeBSD core team

The FreeBSD core team would be equivalent to the board of directors if the FreeBSD Project were
a company. The primary task of the core team is to make sure the project, as a whole, is in good
shape and is heading in the right directions. Inviting dedicated and responsible developers to
join our group of committers is one of the functions of the core team, as is the recruitment of
new core team members as others move on. The current core team was elected from a pool of

24

https://docs.freebsd.org/en/books/dev-model/
https://docs.freebsd.org/en/articles/contributors/
https://docs.freebsd.org/en/articles/contributing/
http://www.nongnu.org/cvs/
https://subversion.apache.org/
https://www.freebsd.org/status/report-2020-10-2020-12.html#Git-Migration-Working-Group
https://git-scm.com/
https://www.freebsd.org/status/report-2021-04-2021-06/#_git_migration_working_group
../cutting-edge/index.html#synching
../ports/index.html#ports-using
https://bugs.FreeBSD.org/submit/

committer candidates in May 2022. Elections are held every 2 years.

Like most developers, most members of the core team are also volunteers when
it comes to FreeBSD development and do not benefit from the project

o financially, so "commitment" should also not be misconstrued as meaning
"guaranteed support." The "board of directors" analogy above is not very
accurate, and it may be more suitable to say that these are the people who gave
up their lives in favor of FreeBSD against their better judgement!

The FreeBSD Foundation

The FreeBSD Foundation is a 501(c)(3), US-based, non-profit organization dedicated to
supporting and promoting the FreeBSD Project and community worldwide. The Foundation
funds software development via project grants and provides staff to immediately respond to
urgent problems and implement new features and functionality. The Foundation purchases
hardware to improve and maintain FreeBSD infrastructure, and funds staffing to improve test
coverage, continuous integration and automation. The Foundation advocates for FreeBSD by
promoting FreeBSD at technical conferences and events around the world. The Foundation also
provides workshops, educational material, and presentations to recruit more users and
contributors to FreeBSD. The Foundation also represents the FreeBSD Project in executing
contracts, license agreements, and other legal arrangements that require a recognized legal
entity.

Outside contributors

Last, but definitely not least, the largest group of developers are the users themselves who
provide feedback and bug fixes to us on an almost constant basis. The primary way of keeping in
touch with development of FreeBSD base system is to subscribe to the FreeBSD technical
discussions mailing list where such things are discussed. For porting third party applications, it
would be the FreeBSD ports mailing list. For documentation - FreeBSD documentation project
mailing list. See Resources on the Internet for more information about the various FreeBSD
mailing lists.

The FreeBSD Contributors List is a long and growing one, so why not join it by contributing
something back to FreeBSD today? Providing code is not the only way!

In summary, our development model is organized as a loose set of concentric circles. The
centralized model is designed for the convenience of the users of FreeBSD, who are provided with
an easy way of tracking one central code base, not to keep potential contributors out! Our desire is
to present a stable operating system with a large set of coherent application programs that the
users can easily install and use - this model works very well in accomplishing that.

All we ask of those who would join us as FreeBSD developers is some of the same dedication its
current people have to its continued success!

1.3.4. Third Party Programs

In addition to the base distributions, FreeBSD offers a ported software collection with thousands of
commonly sought-after programs. The list of ports ranges from HTTP servers, to games, languages,
editors, and almost everything in between. There are about 36000 ports; the entire Ports Collection

25

https://freebsdfoundation.org
https://lists.FreeBSD.org/subscription/freebsd-hackers
https://lists.FreeBSD.org/subscription/freebsd-hackers
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-doc
https://lists.FreeBSD.org/subscription/freebsd-doc
../eresources/index.html#eresources
https://docs.freebsd.org/en/articles/contributors/
https://docs.freebsd.org/en/articles/contributing/
https://docs.freebsd.org/en/articles/contributing/
../ports/index.html#ports

requires approximately 3 GB. To compile a port, you simply change to the directory of the program
you wish to install, type make install, and let the system do the rest. The full original distribution
for each port you build is retrieved dynamically so you need only enough disk space to build the
ports you want.

Almost every port is also provided as a pre-compiled "package", which can be installed with a
simple command (pkg install) by those who do not wish to compile their own ports from source.
More information on packages and ports can be found in Installing Applications: Packages and
Ports.

1.3.5. Additional Documentation

All supported FreeBSD versions provide an option in the installer to install additional
documentation under /usr/local/share/doc/freebsd during the initial system setup. Documentation
may also be installed later using packages:

pkg install en-freebsd-doc

For localized versions replace the "en" with language prefix of choice. Be aware that some of the
localised versions might be out of date and might contain information that is no longer correct or
relevant. You may view the locally installed manuals with a web browser using the following URLs:

The FreeBSD Handbook
Jusr/local/share/doc/freebsd/en/books/handbook/book.html

The FreeBSD FAQ
/usr/local/share/doc/freebsd/en/books/fag/book.html

You can always find up to date documentation at https://docs.FreeBSD.org/.

26

../ports/index.html#ports
../ports/index.html#ports
file:///usr/local/share/doc/freebsd/en/books/handbook/book.html
file://localhost/usr/local/share/doc/freebsd/en/books/faq/book.html
https://docs.FreeBSD.org/

Chapter 2. Installing FreeBSD

2.1. Synopsis

There are several different ways of getting FreeBSD to run, depending on the environment. Those
are:

* Virtual Machine images, to download and import on a virtual environment of choice. These can
be downloaded from the Download FreeBSD page. There are images for KVM ("qcow2"),
VMWare ("vmdk"), Hyper-V ("vhd"), and raw device images that are universally supported.
These are not installation images, but rather the preconfigured ("already installed") instances,
ready to run and perform post-installation tasks.

 Virtual Machine images available at Amazon’s AWS Marketplace, Microsoft Azure Marketplace,
and Google Cloud Platform, to run on their respective hosting services. For more information on
deploying FreeBSD on Azure please consult the relevant chapter in the Azure Documentation.

* SD card images, for embedded systems such as Raspberry Pi or BeagleBone Black. These can be
downloaded from the Download FreeBSD page. These files must be uncompressed and written
as a raw image to an SD card, from which the board will then boot.

* Installation images, to install FreeBSD on a hard drive for the usual desktop, laptop, or server

systems.

The rest of this chapter describes the fourth case, explaining how to install FreeBSD using the text-
based installation program named bsdinstall.

In general, the installation instructions in this chapter are written for the i386™ and AMDG64
architectures. Where applicable, instructions specific to other platforms will be listed. There may
be minor differences between the installer and what is shown here, so use this chapter as a general
guide rather than as a set of literal instructions.

o Users who prefer to install FreeBSD using a graphical installer may be interested
in GhostBSD, MidnightBSD or NomadBSD.

After reading this chapter, you will know:

* The minimum hardware requirements and FreeBSD supported architectures.
* How to create the FreeBSD installation media.

* How to start bsdinstall.

* The questions bsdinstall will ask, what they mean, and how to answer them.

* How to troubleshoot a failed installation.

* How to access a live version of FreeBSD before committing to an installation.
Before reading this chapter, you should:

* Read the supported hardware list that shipped with the version of FreeBSD to be installed and
verify that the system’s hardware is supported.

27

https://www.freebsd.org/where/
https://aws.amazon.com/marketplace/pp/prodview-ukzmy5dzc6nbq
https://azuremarketplace.microsoft.com/en-US/marketplace/apps/thefreebsdfoundation.freebsd-13_0
https://console.cloud.google.com/marketplace/product/freebsd-cloud/freebsd-13
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/freebsd-intro-on-azure
https://www.freebsd.org/where/
https://ghostbsd.org
https://www.midnightbsd.org
https://nomadbsd.org

2.2. Minimum Hardware Requirements

The hardware requirements to install FreeBSD vary by architecture. Hardware architectures and
devices supported by a FreeBSD release are listed on the FreeBSD Release Information page. The
FreeBSD download page also has recommendations for choosing the correct image for different
architectures.

A FreeBSD installation requires a minimum of 96 MB of RAM and 1.5 GB of free hard drive space.
However, such small amounts of memory and disk space are really only suitable for custom
applications like embedded appliances. General-purpose desktop systems need more resources. 2-4
GB RAM and at least 8 GB hard drive space is a good starting point.

These are the processor requirements for each architecture:

amd64

This is the most common desktop and laptop processor type, used in most modern systems.
Intel® calls it Intel64. Other manufacturers sometimes call it x86-64.

Examples of amd64 compatible processors include: AMD Athlon™64, AMD Opteron™, multi-core
Intel® Xeon™, and Intel® Core™ 2 and later processors.

i386
Older desktops and laptops often use this 32-bit, x86 architecture.

Almost all i386-compatible processors with a floating point unit are supported. All Intel®
processors 486 or higher are supported. However, binaries released by the project are compiled
for the 686 processor, so a special build will be needed for 486 and 586 systems.

FreeBSD will take advantage of Physical Address Extensions (PAE) support on CPUs with this
feature. A kernel with the PAE feature enabled will detect memory above 4 GB and allow it to be
used by the system. However, using PAE places constraints on device drivers and other features
of FreeBSD.

arme64

Most embedded boards are 64-bit ARM computers. A number of arm64 servers are supported.

arm

Older armv7 boards are supported.

powerpc
All New World ROM Apple® Mac® systems with built-in USB are supported. SMP is supported on
machines with multiple CPUs.

A 32-bit kernel can only use the first 2 GB of RAM.

2.3. Pre-Installation Tasks

Once it has been determined that the system meets the minimum hardware requirements for
installing FreeBSD, the installation file should be downloaded and the installation media prepared.

28

https://www.FreeBSD.org/releases/
https://www.FreeBSD.org/where/

Before doing this, check that the system is ready for an installation by verifying the items in this
checklist:

1. Back Up Important Data

Before installing any operating system, always backup all important data first. Do not store the
backup on the system being installed. Instead, save the data to a removable disk such as a USB
drive, another system on the network, or an online backup service. Test the backup before
starting the installation to make sure it contains all of the needed files. Once the installer
formats the system’s disk, all data stored on that disk will be lost.

2. Decide Where to Install FreeBSD

If FreeBSD will be the only operating system installed, this step can be skipped. But if FreeBSD
will share the disk with another operating system, decide which disk or partition will be used
for FreeBSD.

In the 1386 and amd64 architectures, disks can be divided into multiple partitions using one of
two partitioning schemes. A traditional Master Boot Record (MBR) holds a partition table
defining up to four primary partitions. For historical reasons, FreeBSD calls these primary
partition slices. One of these primary partitions can be made into an extended partition
containing multiple logical partitions. The GUID Partition Table (GPT) is a newer and simpler
method of partitioning a disk. Common GPT implementations allow up to 128 partitions per
disk, eliminating the need for logical partitions.

The FreeBSD boot loader requires either a primary or GPT partition. If all of the primary or GPT
partitions are already in use, one must be freed for FreeBSD. To create a partition without
deleting existing data, use a partition resizing tool to shrink an existing partition and create a
new partition using the freed space.

A variety of free and commercial partition resizing tools are listed at
http://en.wikipedia.org/wiki/List_of disk_partitioning_software. GParted Live
(https://gparted.org/livecd.php) is a free live CD which includes the GParted partition editor.
GParted is also included with many other Linux live CD distributions.

When used properly, disk shrinking utilities can safely create space for

A creating a new partition. Since the possibility of selecting the wrong partition
exists, always backup any important data and verify the integrity of the backup
before modifying disk partitions.

Disk partitions containing different operating systems make it possible to install multiple
operating systems on one computer. An alternative is to use virtualization (Virtualization)
which allows multiple operating systems to run at the same time without modifying any disk
partitions.

3. Collect Network Information

Some FreeBSD installation methods require a network connection in order to download the
installation files. After any installation, the installer will offer to setup the system’s network
interfaces.

29

http://en.wikipedia.org/wiki/List_of_disk_partitioning_software
https://gparted.org/livecd.php
../virtualization/index.html#virtualization

If the network has a DHCP server, it can be used to provide automatic network configuration. If
DHCP is not available, the following network information for the system must be obtained from
the local network administrator or Internet service provider:

Required Network Information

a. IP address

b. Subnet mask

c. IP address of default gateway

d. Domain name of the network

e. IP addresses of the network’s DNS servers

4, Check for FreeBSD Errata

Although the FreeBSD Project strives to ensure that each release of FreeBSD is as stable as
possible, bugs occasionally creep into the process. On very rare occasions those bugs affect the
installation process. As these problems are discovered and fixed, they are noted in the FreeBSD
Errata (https://www.freebsd.org/releases/13.0R/errata/) on the FreeBSD web site. Check the
errata before installing to make sure that there are no problems that might affect the
installation.

Information and errata for all the releases can be found on the release information section of
the FreeBSD web site (https://www.freebsd.org/releases/).

2.3.1. Prepare the Installation Media

The FreeBSD installer is not an application that can be run from within another operating system.
Instead, download a FreeBSD installation file, burn it to the media associated with its file type and
size (CD, DVD, or USB), and boot the system to install from the inserted media.

FreeBSD installation files are available at www.freebsd.org/where/. Each installation file’s name
includes the release version of FreeBSD, the architecture, and the type of file. For example, to install
FreeBSD 13.0 on an amd64 system from a DVD, download FreeBSD-13.0-RELEASE-amd64-dvd1.iso,
burn this file to a DVD, and boot the system with the DVD inserted.

Installation files are available in several formats. The formats vary depending on computer
architecture and media type.

Additional installation files are included for computers that boot with UEFI (Unified Extensible
Firmware Interface). The names of these files include the string uefi.

File types:

* -bootonly.iso: This is the smallest installation file as it only contains the installer. A working
Internet connection is required during installation as the installer will download the files it
needs to complete the FreeBSD installation. This file should be burned to a CD using a CD
burning application.

e -disc1.iso: This file contains all of the files needed to install FreeBSD, its source, and the Ports

30

https://www.FreeBSD.org/releases/13.0R/errata/
https://www.FreeBSD.org/releases/
https://www.FreeBSD.org/where/

Collection. It should be burned to a CD using a CD burning application.

e -dvd1.iso: This file contains all of the files needed to install FreeBSD, its source, and the Ports
Collection. It also contains a set of popular binary packages for installing a window manager
and some applications so that a complete system can be installed from media without requiring
a connection to the Internet. This file should be burned to a DVD using a DVD burning
application.

* -memstick.img: This file contains all of the files needed to install FreeBSD, its source, and the
Ports Collection. It should be burned to a USB stick using the instructions below.

* -mini-memstick.img: Like -bootonly.iso, does not include installation files, but downloads them
as needed. A working internet connection is required during installation. Write this file to a USB
stick as shown in Writing an Image File to USB.

After downloading the image file, download CHECKSUM.SHA256 from the same directory. Calculate
a checksum for the image file. FreeBSD provides sha256(1) for this, used as sha256 imagefilename.
Other operating systems have similar programs.

Compare the calculated checksum with the one shown in CHECKSUM.SHA256. The checksums must
match exactly. If the checksums do not match, the image file is corrupt and must be downloaded
again.

2.3.1.1. Writing an Image File to USB

The *img file is an image of the complete contents of a memory stick. It cannot be copied to the
target device as a file. Several applications are available for writing the *img to a USB stick. This
section describes two of these utilities.

o Before proceeding, back up any important data on the USB stick. This procedure
will erase the existing data on the stick.

31

https://www.freebsd.org/cgi/man.cgi?query=sha256&sektion=1&format=html

Procedure. Using dd to Write the Image

This example uses /dev/da0 as the target device where the image will be
A written. Be very careful that the correct device is used as this command will
destroy the existing data on the specified target device.

1. The command-line utility is available on BSD, Linux®, and Mac OS® systems. To burn the

image using dd, insert the USB stick and determine its device name. Then, specify the
name of the downloaded installation file and the device name for the USB stick. This
example burns the amd64 installation image to the first USB device on an existing
FreeBSD system.

dd if=FreeBSD-13.0-RELEASE-amd64-memstick.img of=/dev/da@ bs=1M conv=sync

If this command fails, verify that the USB stick is not mounted and that the device name is
for the disk, not a partition. Some operating systems might require this command to be
run with sudo(8). The dd(1) syntax varies slightly across different platforms; for example,
Mac OS® requires a lower-case bs=1m. Systems like Linux® might buffer writes. To force
all writes to complete, use sync(8).

Procedure. Using Windows® to Write the Image

g Be sure to give the correct drive letter as the existing data on the specified
drive will be overwritten and destroyed.

1. Obtaining Image Writer for Windows®

Image Writer for Windows® is a free application that can correctly write an image file to
a memory stick. Download it from https://sourceforge.net/projects/win32diskimager/ and
extract it into a folder.

. Writing the Image with Image Writer

Double-click the Win32DiskImager icon to start the program. Verify that the drive letter
shown under Device is the drive with the memory stick. Click the folder icon and select
the image to be written to the memory stick. Click [Save] to accept the image file name.
Verify that everything is correct, and that no folders on the memory stick are open in
other windows. When everything is ready, click [Write] to write the image file to the
memory stick.

You are now ready to start installing FreeBSD.

32

https://www.freebsd.org/cgi/man.cgi?query=sudo&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=dd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sync&sektion=8&format=html
https://sourceforge.net/projects/win32diskimager/

2.4. Starting the Installation

By default, the installation will not make any changes to the disk(s) before the
following message:

Your changes will now be written to disk. If you
have chosen to overwrite existing data, it will

o be PERMANENTLY ERASED. Are you sure you want to
commit your changes?

The install can be exited at any time prior to this warning. If there is a concern
that something is incorrectly configured, just turn the computer off before this
point and no changes will be made to the system’s disks.

This section describes how to boot the system from the installation media which was prepared
using the instructions in Prepare the Installation Media. When using a bootable USB stick, plug in
the USB stick before turning on the computer. When booting from CD or DVD, turn on the computer
and insert the media at the first opportunity. How to configure the system to boot from the inserted
media depends upon the architecture.

2.4.1. Booting on 1386™ and amd64

These architectures provide a BIOS menu for selecting the boot device. Depending upon the
installation media being used, select the CD/DVD or USB device as the first boot device. Most
systems also provide a key for selecting the boot device during startup without having to enter the
BIOS. Typically, the key is either F10, F11, F12, or Escape.

If the computer loads the existing operating system instead of the FreeBSD installer, then either:

1. The installation media was not inserted early enough in the boot process. Leave the media
inserted and try restarting the computer.

2. The BIOS changes were incorrect or not saved. Double-check that the right boot device is
selected as the first boot device.

3. This system is too old to support booting from the chosen media. In this case, the Plop Boot
Manager (http://www.plop.at/en/bootmanagers.html) can be used to boot the system from the
selected media.

2.4.2. Booting on PowerPC®

On most machines, holding C on the keyboard during boot will boot from the CD. Otherwise, hold
Command + Option + 0 + F, or Windows + Alt + 0 + F on non-Apple® keyboards. At the @ > prompt, enter

boot cd:,\ppc\loader cd:0

33

http://www.plop.at/en/bootmanagers.html

2.4.3. FreeBSD Boot Menu

Once the system boots from the installation media, a menu similar to the following will be
displayed:

elcome to FreeB3D

Boot Multi wuser [Enterl
Boot Single user

Ezcape to loader prompt
Reboot

Options:
5. Kernel: defaultr
6. Boot Options

Figure 1. FreeBSD Boot Loader Menu

By default, the menu will wait ten seconds for user input before booting into the FreeBSD installer
or, if FreeBSD is already installed, before booting into FreeBSD. To pause the boot timer in order to
review the selections, press Space. To select an option, press its highlighted number, character, or
key. The following options are available.

* Boot Multi User: This will continue the FreeBSD boot process. If the boot timer has been paused,
press 1, upper- or lower-case B, or Enter.

* Boot Single User: This mode can be used to fix an existing FreeBSD installation as described in
“Single-User Mode”. Press 2 or the upper- or lower-case S to enter this mode.

» Escape to loader prompt: This will boot the system into a repair prompt that contains a limited
number of low-level commands. This prompt is described in “Stage Three”. Press 3 or Esc to boot
into this prompt.

* Reboot: Reboots the system.
e Kernel: Loads a different kernel.

* Configure Boot Options: Opens the menu shown in, and described under, FreeBSD Boot Options
Menu.

34

../boot/index.html#boot-singleuser
../boot/index.html#boot-loader

1. Back to Main Menu [Backspacel
2. Load System Defaults

Boot Options:
3. ACPI Support
4. Safe Mode. ..
5. Single User.
6. Verbose

Figure 2. FreeBSD Boot Options Menu

The boot options menu is divided into two sections. The first section can be used to either return to
the main boot menu or to reset any toggled options back to their defaults.

The next section is used to toggle the available options to On or Off by pressing the option’s
highlighted number or character. The system will always boot using the settings for these options
until they are modified. Several options can be toggled using this menu:

» ACPI Support: If the system hangs during boot, try toggling this option to 0ff.

» Safe Mode: If the system still hangs during boot even with ACPI Support set to 0ff, try setting this
option to On.

* Single User: Toggle this option to On to fix an existing FreeBSD installation as described in
“Single-User Mode”. Once the problem is fixed, set it back to 0ff.

» Verbose: Toggle this option to On to see more detailed messages during the boot process. This can
be useful when troubleshooting a piece of hardware.

After making the needed selections, press 1 or Backspace to return to the main boot menu, then
press Enter to continue booting into FreeBSD. A series of boot messages will appear as FreeBSD
carries out its hardware device probes and loads the installation program. Once the boot is
complete, the welcome menu shown in Welcome Menu will be displayed.

35

../boot/index.html#boot-singleuser

FreeB5D Installer

e lcome
Welcome to FreeBSD! Would you
like to begin an installation
or use the live CD7?

+
1
1
1
1
1
1

+
1
1

HIEEYEE < Shell » <Live CD>

Figure 3. Welcome Menu

Press Enter to select the default of [Install] to enter the installer. The rest of this chapter describes
how to use this installer. Otherwise, use the right or left arrows or the colorized letter to select the
desired menu item. The [Shell] can be used to access a FreeBSD shell in order to use command line
utilities to prepare the disks before installation. The [Live CD] option can be used to try out
FreeBSD before installing it. The live version is described in Using the Live CD.

To review the boot messages, including the hardware device probe, press the
(r') upper- or lower-case S and then Enter to access a shell. At the shell prompt, type
- more /var/run/dmesg.boot and use the space bar to scroll through the messages.
When finished, type exit to return to the welcome menu.

2.5. Using bsdinstall

This section shows the order of the bsdinstall menus and the type of information that will be asked
before the system is installed. Use the arrow keys to highlight a menu option, then Space to select or
deselect that menu item. When finished, press Enter to save the selection and move onto the next
screen.

2.5.1. Selecting the Keymap Menu

Before starting the process, bsdinstall will load the keymap files as show in Keymap Loading.

36

bedconf ig

keymap
Looking for keymap files...]

Figure 4. Keymap Loading

After the keymaps have been loaded bsdinstall displays the menu shown in Keymap Selection
Menu. Use the up and down arrows to select the keymap that most closely represents the mapping
of the keyboard attached to the system. Press Enter to save the selection.

FreeB5D Installer

Keymap Selection
The system console driver for FreeBSD defaults to standard "US"
keyboard map. Other keymaps can be chosen below.

Armenian phonetic layout

Belarusian Codepage 1131

Belaru=sian Codepage 1251

Belarusian IS0-8859-5

Belgian IS50-8859-1

Belgian IS0-8859-1 (accent keys)
Brazilian 275 Codepage 850

Brazilian 275 IS0-8859-1

Brazilian 275 I130-8859-1 (accent keys)
Bulgarian BDS

mm o mE mE mE mE mE mE mE mE mE mE mE mE e mE m= ==

<Helect <Cancel>

[Fress arrows, TAB or ENTERI]

Figure 5. Keymap Selection Menu

o Pressing Esc will exit this menu and use the default keymap. If the choice of
keymap is not clear, United States of America ISO-8859-1 is also a safe option.

In addition, when selecting a different keymap, the user can try the keymap and ensure it is correct

37

before proceeding as shown in Keymap Testing Menu.

FreeBSD Installer

Test e=z.acc.kbd keuymap
Test the keymap by typing letters, numbers, and symbols. Characters
should match labels on the keyboard keys. Press Enter to stop testing.

ltest the keyboard]]

Figure 6. Keymap Testing Menu

2.5.2. Setting the Hostname

The next bsdinstall menu is used to set the hostname for the newly installed system.

FreeB3D Installer

5et Hostname
Please choose a hostname for this machine.

If you are running on a managed network, please
ask your network administrator for an appropriate

- e omEm me mE omE mE == ==

Figure 7. Setting the Hostname

Type in a hostname that is unique for the network. It should be a fully-qualified hostname, such as
machine3.example.com.

38

2.5.3. Selecting Components to Install

Next, bsdinstall will prompt to select optional components to install.

FreeBSD Installer

Distribution Select
Choose optional system components to install:

base-dbg]| Baze system (Debugging)

kernel-dby Kernel (Debugging)

lib32-dbyg 32-bit compatibility libraries (Debugging)
lib3Z 32-bit compatibility libraries

ports Ports tree

Erc System source tree
tests Test =suite

Figure 8. Selecting Components to Install

Deciding which components to install will depend largely on the intended use of the system and the
amount of disk space available. The FreeBSD kernel and userland, collectively known as the base
system, are always installed. Depending on the architecture, some of these components may not
appear:

* base-dbg - Base tools like cat, Is among many others with debug symbols activated.
* kernel-dbg - Kernel and modules with debug symbols activated.

* 1ib32-dbg - Compatibility libraries for running 32-bit applications on a 64-bit version of FreeBSD
with debug symbols activated.

* 1ib32 - Compatibility libraries for running 32-bit applications on a 64-bit version of FreeBSD.

* ports - The FreeBSD Ports Collection is a collection of files which automates the downloading,
compiling and installation of third-party software packages. Installing Applications: Packages
and Ports discusses how to use the Ports Collection.

The installation program does not check for adequate disk space. Select this
A option only if sufficient hard disk space is available. The FreeBSD Ports
Collection takes up about 3 GB of disk space.

* src - The complete FreeBSD source code for both the kernel and the userland. Although not
required for the majority of applications, it may be required to build device drivers, kernel
modules, or some applications from the Ports Collection. It is also used for developing FreeBSD
itself. The full source tree requires 1 GB of disk space and recompiling the entire FreeBSD
system requires an additional 5 GB of space.

39

../ports/index.html#ports
../ports/index.html#ports

e tests - FreeBSD Test Suite.

2.5.4. Installing from the Network

The menu shown in Installing from the Network only appears when installing from a -bootonly.iso
or -mini-memstick.img as this installation media does not hold copies of the installation files. Since
the installation files must be retrieved over a network connection, this menu indicates that the
network interface must be configured first. If this menu is shown in any step of the process
remember to follow the instructions in Configuring Network Interfaces.

FreeB3D Installer

Network Installation
Some installation files were not found
on the boot volume. The next few
screens will allow you to configure
networking so that they can be

downloaded from the Internet.

Figure 9. Installing from the Network

2.6. Allocating Disk Space

The next menu is used to determine the method for allocating disk space.

40

FreeB5D Installer

Partitioning
How would you like to partition your disk?

Auto (UFSIEGuided Disk Setup

Manual Manual Disk Setup (experts)
Shell Open a =shell and partition by hand
Auto (ZF5) Guided Root-on-ZF5

<Cancel>

Figure 10. Partitioning Choices

bsdinstall gives the user four methods for allocating disk space:

Auto (UFS) partitioning automatically sets up the disk partitions using the UFS file system.

* Manual partitioning allows advanced users to create customized partitions from menu options.

Shell opens a shell prompt where advanced users can create customized partitions using
command-line utilities like gpart(8), fdisk(8), and bsdlabel(8).

Auto (ZFS) partitioning creates a root-on-ZFS system with optional GELI encryption support for
boot environments.

This section describes what to consider when laying out the disk partitions. It then demonstrates
how to use the different partitioning methods.

2.6.1. Designing the Partition Layout

When laying out file systems, remember that hard drives transfer data faster from the outer tracks
to the inner. Thus, smaller and heavier-accessed file systems should be closer to the outside of the
drive, while larger partitions like /usr should be placed toward the inner parts of the disk. It is a
good idea to create partitions in an order similar to: /, swap, /var, and /usr.

The size of the /var partition reflects the intended machine’s usage. This partition is used to hold
mailboxes, log files, and printer spools. Mailboxes and log files can grow to unexpected sizes
depending on the number of users and how long log files are kept. On average, most users rarely
need more than about a gigabyte of free disk space in /var.

41

https://www.freebsd.org/cgi/man.cgi?query=gpart&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=fdisk&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=bsdlabel&sektion=8&format=html

Sometimes, a lot of disk space is required in /var/tmp. When new software is

o installed, the packaging tools extract a temporary copy of the packages under
/var/tmp. Large software packages, like Firefox or LibreOffice may be tricky to
install if there is not enough disk space under /var/tmp.

The /usr partition holds many of the files which support the system, including the FreeBSD Ports
Collection and system source code. At least 2 gigabytes of space is recommended for this partition.

When selecting partition sizes, keep the space requirements in mind. Running out of space in one
partition while barely using another can be a hassle.

As a rule of thumb, the swap partition should be about double the size of physical memory (RAM).
Systems with minimal RAM may perform better with more swap. Configuring too little swap can
lead to inefficiencies in the VM page scanning code and might create issues later if more memory is
added.

On larger systems with multiple SCSI disks or multiple IDE disks operating on different controllers,
it is recommended that swap be configured on each drive, up to four drives. The swap partitions
should be approximately the same size. The kernel can handle arbitrary sizes but internal data
structures scale to 4 times the largest swap partition. Keeping the swap partitions near the same
size will allow the kernel to optimally stripe swap space across disks. Large swap sizes are fine,
even if swap is not used much. It might be easier to recover from a runaway program before being
forced to reboot.

By properly partitioning a system, fragmentation introduced in the smaller write heavy partitions
will not bleed over into the mostly read partitions. Keeping the write loaded partitions closer to the
disk’s edge will increase I/O performance in the partitions where it occurs the most. While I/O
performance in the larger partitions may be needed, shifting them more toward the edge of the
disk will not lead to a significant performance improvement over moving /var to the edge.

2.6.2. Guided Partitioning Using UFS

When this method is selected, a menu will display the available disk(s). If multiple disks are
connected, choose the one where FreeBSD is to be installed.

42

FreeB5D Installer

Partitioning
Select the disk on which to install FreeBSD.

hda@@N1Z GBE ATA Hard Disk <UBOX HARDDISK>

adal 10 GB ATA Hard Disk <UBOX HARDDISK>

+
1
1
1
1
1
1
(]
1
(]
1
1
1
1
1
+
(]
1

Figure 11. Selecting from Multiple Disks

Once the disk is selected, the next menu prompts to install to either the entire disk or to create a
partition using free space. If [Entire Disk] is chosen, a general partition layout filling the whole
disk is automatically created. Selecting [Partition] creates a partition layout from the unused
space on the disk.

FreeB3D Installer

Partition
Would you like to use this entire disk
(ada®) for FreeBSD or partition it to
share it with other operating systems?
Using the entire disk will erase any

data currently stored there.

S

GEXITTRITS < Partition >

Figure 12. Selecting Entire Disk or Partition

After [Entire Disk] is chosen bsdinstall displays a dialog indicating that the disk will be erased.

43

FreeB5D Installer

Partition
Conf irmation
Thizs will erase the disk.
Are you s=ure you want to
proceed?

< Tes > IIRINER

Figure 13. Confirmation

The next menu shows a list with the partition schemes types. GPT is usually the most appropriate
choice for amd64 computers. Older computers that are not compatible with GPT should use MBR.
The other partition schemes are generally used for uncommon or older computers. More
information is available in Partitioning Schemes.

FreeB3D Installer

Partition Scheme
Select a partition scheme for this
volume :

APH Apple Partition Map

B5SD BSD Labels

MER D05 Partitions

UTOCS 3Sun VUTOC3 Partition Table

<Cancel>

Bootable on most xB6 systems and EFI aware ARMG4

Figure 14. Select Partition Scheme

After the partition layout has been created, review it to ensure it meets the needs of the installation.
Selecting [Revert] will reset the partitions to their original values and pressing [Auto] will
recreate the automatic FreeBSD partitions. Partitions can also be manually created, modified, or
deleted. When the partitioning is correct, select [Finish] to continue with the installation.

44

FreeB5D Installer

Partition Editor
Please review the disk setup. When complete, press
the Finish button.

16 GB GPT
adaOpl 512 KB freebsd-boot
ada@pZ 15 GB freebsd-ufs=s s
adaGp3 819 MB freebsd-zwap none
adal 16 GB

{Create> <Delete> <Modify> <Revert> < Auto >

Exit partitioner (will ask whether to save changes)

Figure 15. Review Created Partitions

Once the disks are configured, the next menu provides the last chance to make changes before the
selected drives are formatted. If changes need to be made, select [Back] to return to the main
partitioning menu. [Revert & Exit] exits the installer without making any changes to the drive.

Select [Commit] to start the installation process.

FreeB3D Installer

Partition Editor
Please review the disk setup. When complete, press
the Finish button.

Confirmation
Your changes will now be written to disk. If you
have chosen to overwrite existing data, it will
be PERMANENTLY ERASED. Are you sure you want to
commit your changes?

<Revert & Exit> < Back

{Create> <Delete> <Modify> <Revert> < Auto >

Exit partitioner (will ask whether to save changes)

Figure 16. Final Confirmation

To continue with the installation process go to

45

2.6.3. Manual Partitioning

Selecting this method opens the partition editor:

FreeBSD Installer

Partition Editor
Create partitions for FreeBSD. Mo changes will be
made until you select Finish.

* == mm mm mE mE == == ==

WA <Delete> {Modify> <Reverti> < Auto > <(Finish>

Add a new partition

Figure 17. Manually Create Partitions

Highlight the installation drive (ada0O in this example) and select [Create] to display a menu of
available partition schemes:

FreeBSD Installer

Partition Scheme
Select a partition scheme for this
volume :

AFM Apple Partition Map

B3D BSD Labels

MBR DOS Partitions

UTOCS 3Sun UTOC3 Partition Table

<Cancel>

Bootable on most x86 systems and EFI aware ARMG64

Figure 18. Manually Create Partitions

GPT is usually the most appropriate choice for amd64 computers. Older computers that are not
compatible with GPT should use MBR. The other partition schemes are generally used for

46

uncommon or older computers.

Table 1. Partitioning Schemes

Abbreviation Description
APM Apple Partition Map, used by PowerPC®.
BSD BSD label without an MBR, sometimes called

dangerously dedicated mode as non-BSD disk
utilities may not recognize it.

GPT GUID Partition Table
(http://en.wikipedia.org/wiki/GUID_Partition_Tab
le).

MBR Master Boot Record
(http://en.wikipedia.org/wiki/Master_boot_recor
d).

After the partitioning scheme has been selected and created, select [Create] again to create the
partitions. The Tab key is used to move the cursor between fields.

FreeBSD Installer

Partition Editor
Create partitions for FreeBSD. Mo changes will be
fAdd Partition 1

Type : greebsd-ufs
Jize:

Mountpoint:

Label:

oK > {O0ptions> <{Cancel >

WA <Delete> {Modify> <Reverti> < Auto > <(Finish>

Filesystem type (e.g. freebzd-uf=s, freebsd-zfz, freebzd-swap)

Figure 19. Manually Create Partitions

A standard FreeBSD GPT installation uses at least three partitions:

freebsd-boot - Holds the FreeBSD boot code.

freebsd-ufs - A FreeBSD UFS file system.

freebsd-zfs - A FreeBSD ZFS file system. More information about ZFS is available in The Z File
System (ZFS).

freebsd-swap - FreeBSD swap space.

47

http://en.wikipedia.org/wiki/GUID_Partition_Table
http://en.wikipedia.org/wiki/GUID_Partition_Table
http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Master_boot_record
../zfs/index.html#zfs
../zfs/index.html#zfs

Refer to gpart(8) for descriptions of the available GPT partition types.

Multiple file system partitions can be created and some people prefer a traditional layout with
separate partitions for /, /var, /tmp, and /usr. See Creating Traditional Split File System Partitions for
an example.

The Size may be entered with common abbreviations: K for kilobytes, M for megabytes, or G for
gigabytes.

Proper sector alignment provides the best performance, and making partition
sizes even multiples of 4K bytes helps to ensure alignment on drives with either
(r') 512-byte or 4K-byte sectors. Generally, using partition sizes that are even multiples
- of 1M or 1G is the easiest way to make sure every partition starts at an even
multiple of 4K. There is one exception: the freebsd-boot partition should be no
larger than 512K due to current boot code limitations.

A Mountpoint is needed if the partition will contain a file system. If only a single UFS partition will
be created, the mountpoint should be /.

The Label is a name by which the partition will be known. Drive names or numbers can change if
the drive is connected to a different controller or port, but the partition label does not change.
Referring to labels instead of drive names and partition numbers in files like /etc/fstab makes the
system more tolerant to hardware changes. GPT labels appear in /dev/gpt/ when a disk is attached.
Other partitioning schemes have different label capabilities and their labels appear in different
directories in /dev/.

Use a unique label on every partition to avoid conflicts from identical labels. A few

(r) letters from the computer’s name, use, or location can be added to the label. For
- instance, use labroot or rootfslab for the UFS root partition on the computer
named lab.

48

https://www.freebsd.org/cgi/man.cgi?query=gpart&sektion=8&format=html

Example 1. Creating Traditional Split File System Partitions

For a traditional partition layout where the /, /var, /tmp, and /usr directories are separate file
systems on their own partitions, create a GPT partitioning scheme, then create the partitions as
shown. Partition sizes shown are typical for a 20G target disk. If more space is available on the
target disk, larger swap or /var partitions may be useful. Labels shown here are prefixed with
ex for "example", but readers should use other unique label values as described above.

By default, FreeBSD’s gptboot expects the first UFS partition to be the / partition.

Partition Type Size Mountpoint Label
freebsd-boot 512K
freebsd-ufs 26 / exrootfs
freebsd-swap 4G exswap
freebsd-ufs 26 /var exvarfs
freebsd-ufs 1G /tmp extmpfs
freebsd-ufs accept the default Jusr exusrfs
(remainder of the
disk)

After the custom partitions have been created, select [Finish] to continue with the installation and
go to Fetching Distribution Files.

2.6.4. Guided Partitioning Using Root-on-ZFS

This partitioning mode only works with whole disks and will erase the contents of the entire disk.
The main ZFS configuration menu offers a number of options to control the creation of the pool.

49

FreeB5D Installer

ZFS Configuration
Conf igure Options:

Proceed with Installation
Pool Type-sDisks: stripe: 0 disks
Rescan Devices *

Disk Info *

Pool Name zroot

Force 4K 3ectors? YES

Encrypt Disks? NOD

Partition Scheme GPT (BIOS)

Swap Size 2q

Mirror Swap? HO

Encrypt Swap? [y [1]

|

N
4
E
P
3
M
W

<ie lect | <Cancel>

Create ZFS boot pool with displayed options
Figure 20. ZFS Partitioning Menu

Here is a summary of the options which can be used in this menu:

* Install - Proceed with the installation with the selected options.

* Pool Type/Disks - Allow to configure the Pool Type and the disk(s) that will constitute the pool.
The automatic ZFS installer currently only supports the creation of a single top level vdeyv,
except in stripe mode. To create more complex pools, use the instructions in Shell Mode
Partitioning to create the pool.

* Rescan Devices - Repopulate the list of available disks.

* Disk Info - Disk Info menu can be used to inspect each disk, including its partition table and
various other information such as the device model number and serial number, if available.

* Pool Name - Establish the name of the pool. The default name is zroot.

* Force 4K Sectors? - Force the use of 4K sectors. By default, the installer will automatically create
partitions aligned to 4K boundaries and force ZFS to use 4K sectors. This is safe even with 512
byte sector disks, and has the added benefit of ensuring that pools created on 512 byte disks will
be able to have 4K sector disks added in the future, either as additional storage space or as
replacements for failed disks. Press the Enter key to chose to activate it or not.

* Encrypt Disks? - Encrypting the disks allows the user to encrypt the disks using GELI. More
information about disk encryption is available in “Disk Encryption with geli”. Press the Enter
key to chose activate it or not.

e Partition Scheme - Allow to choose the partition scheme. GPT is the recommended option in
most cases. Press the Enter key to chose between the different options.

* Swap Size - Establish the amount of swap space.

e Mirror Swap? - Allows the user to mirror the swap between the disks. Be aware, enabling mirror
swap will break crash dumps. Press the Enter key to activate it or not.

50

../disks/index.html#disks-encrypting-geli

* Encrypt Swap? - Allow the user the possibility to encrypt the swap. Encrypts the swap with a
temporary key each time that the system boots and discards it on reboot. Press the Enter key to
chose activate it or not. More information about swap encryption in “Encrypting Swap”.

Select T to configure the Pool Type and the disk(s) that will constitute the pool.

FreeB5D Installer

ZF53 Configuration
Select Virtual Device type:

Stripe — No Redundancy

mirror Mirror - n-Way Mirroring

raidl® RaAlID 1+0 - n x £Z-Way Mirrors
raidzl BRAID-Z21 - Single Redundant RAID
raidzZ RAID-ZZ2 - Double Redundant RAID
raidz3 RAID-Z3 - Triple Redundant RAID

<Cancel>

[FPress arrows, TAB or ENTERI]

[1+ Digsks]l Striping provides maximum storage but no redundancy

Figure 21. ZFS Pool Type
Here is a summary of the Pool Type which can be selected in this menu:

* stripe - Striping provides maximum storage of all connected devices, but no redundancy. If just
one disk fails the data on the pool is lost irrevocably.

* mirror - Mirroring stores a complete copy of all data on every disk. Mirroring provides a good
read performance because data is read from all disks in parallel. Write performance is slower
as the data must be written to all disks in the pool. Allows all but one disk to fail. This option
requires at least two disks.

* raid10 - Striped mirrors. Provides the best performance, but the least storage. This option needs
at least an even number of disks and a minimum of four disks.

* raidz1 - Single Redundant RAID. Allow one disk to fail concurrently. This option needs at least
three disks.

* raidz2 - Double Redundant RAID. Allows two disks to fail concurrently. This option needs at
least four disks.

* raidz3 - Triple Redundant RAID. Allows three disks to fail concurrently. This option needs at
least five disks.

Once a Pool Type has been selected, a list of available disks is displayed, and the user is prompted to
select one or more disks to make up the pool. The configuration is then validated, to ensure enough
disks are selected. If not, select [<Change Selection>] to return to the list of disks, or [<Back>] to
change the Pool Type.

51

../disks/index.html#swap-encrypting

FreeB5D Installer

ZF5 Configuration

[*]1 adatd WUBOX HARDDISK 1.0

[x1] BOX HARDDISK 1.0

Figure 22. Disk Selection

FreeB3D Installer

ZF5 Configuration
raidzl: Mot enough disks selected. (£ < 3 minimum)

<#hange Selection> < Cancel

[FPress arrows, TAB or ENTERI]

Figure 23. Invalid Selection

If one or more disks are missing from the list, or if disks were attached after the installer was
started, select [- Rescan Devices] to repopulate the list of available disks.

52

FreeB5D Installer

ZF5 Configuration
Probing dewvices, please wait (this can take a whilel...]

Figure 24. Rescan Devices

To avoid accidentally erasing the wrong disk, the [- Disk Info] menu can be used to inspect each
disk, including its partition table and various other information such as the device model number
and serial number, if available.

FreeB5D Installer

ZFS Configuration
gpart(8) show adal:
=» 34 33554365 adal GPT (16G)
34 1024 1 freebsd-boot (51ZK)
1058 4194304 2 freebsd-swap (2.0G)
4195362 29359037 3 freebsd-zf=z (14G)

camcontrol(8) ingquiry adal:

camcontrol(8) identify adal:
passl: <UBODX HARDDISK 1.0> ATh-6 dewvice
passl: 33.300MBr= tranzsfersz (UDMAZ, PIO 65536bytes)

protocol ATA-ATAPI-6
device model WUBOX HARDDISK

mm ok mE mm mE mE mE mE mm mE mE mE e mm mE mE == ==

Figure 25. Analyzing a Disk

Select N to configure the Pool Name. Enter the desired name then select [<OK>] to establish it or
[<Cancel>] to return to the main menu and leave the default name.

53

FreeB5D Installer

ZF5 Configuration
Please enter a name for your =zpool:

lzruutl

<Cancel>

Figure 26. Pool Name

Select S to set the amount of swap. Enter the desired amount of swap and then select [<OK>] to
establish it or [<Cancel>] to return to the main menu and let the default amount.

FreeBSD Installer

ZFS Configuration
Please enter amount of swap space (SI-Unit suffixes
recommended: e.g., 2g° for Z Gigabytes):

lzul

<Cancel >

Figure 27. Swap Amount

Once all options have been set to the desired values, select the [>>> Install] option at the top of the
menu. The installer then offers a last chance to cancel before the contents of the selected drives are
destroyed to create the ZFS pool.

54

FreeB5D Installer

ZFS Configuration

Are you sure you want to

the current contents of the following disks:

ada® adal

+
1
1
1
1
(]
1
(]
1
1
1

+
1
1

< YES > <0)
[Press arrows, TAB or ENTERI]

Figure 28. Last Chance

If GELI disk encryption was enabled, the installer will prompt twice for the passphrase to be used to
encrypt the disks. And after that the initializing of the encryption begins.

FreeBSD Installer

ZF5 Configuration
Enter a =trong passphrase, used to protect your encryption keys. You will
be required to enter this passphrase each time the system iz booted

i

<Cancel>
—————————————— [Use alpha-numeric, punctwation, TAB or ENTER]---———""—"""—""—"""—

Figure 29. Disk Encryption Password

55

FreeB5D Installer

ZF5 Configuration
Initializing encryption on selected disks,

thiz will take several seconds per disk

Figure 30. Initializing Encryption

The installation then proceeds normally. To continue with the installation go to Fetching
Distribution Files.

2.6.5. Shell Mode Partitioning

When creating advanced installations, the bsdinstall partitioning menus may not provide the level
of flexibility required. Advanced users can select the [Shell] option from the partitioning menu in
order to manually partition the drives, create the file system(s), populate /tmp/bsdinstall_etc/fstab,
and mount the file systems under /mnt. Once this is done, type exit to return to bsdinstall and
continue the installation.

2.7. Fetching Distribution Files

Installation time will vary depending on the distributions chosen, installation media, and speed of
the computer. A series of messages will indicate the progress.

First, the installer formats the selected disk(s) and initializes the partitions. Next, in the case of a
bootonly media or mini memstick, it downloads the selected components:

36

FreeB5D Installer

Fetching Distribution

base.tx= [Done
kernel .tx= [Done
lib32.tx= [l 15~
ports . tx= [Pending
src.txz [Pending
tests. . txz [Pending

Fetching distribution files...

Overall Progress

I 4

Figure 31. Fetching Distribution Files

Next, the integrity of the distribution files is verified to ensure they have not been corrupted during
download or misread from the installation media:

FreeBSD Installer

Checksum Verification

base.tx= [Passzed
kernel .tx= [Passed
lib3Z tx= [In Progress
ports.txz [Pending
src.txz [Pending
tests.tx= [Pending

UVerifying checksums of selected
distributions.

Overall Progress

I

Figure 32. Verifying Distribution Files

Finally, the verified distribution files are extracted to the disk:

37

FreeB5D Installer

Archive Extraction
Extracting distribution files...

base.tx= L

kernel .tx= L
1ib32 . tx=... - [27+
ports.tx= L Pending
src.txz L Pending
tests.tx= L Pending

Overall Progress:

I 38

26822 files read @ 670.0 filesssec. [1-3 busyrwaitl

Figure 33. Extracting Distribution Files

Once all requested distribution files have been extracted, bsdinstall displays the first post-
installation configuration screen. The available post-configuration options are described in the next
section.

2.8. Accounts, Time Zone, Services and Hardening

2.8.1. Setting the root Password

First, the root password must be set. While entering the password, the characters being typed are
not displayed on the screen. After the password has been entered, it must be entered again. This
helps prevent typing errors.

38

FreeB5D Installer

leaze select a password for the system management account (root):
yped characters will not be wvisible.

hanging local password for root

ew Password:

etype MNew Password:[]

Figure 34. Setting the root Password

2.8.2. Setting the Time Zone

The next series of menus are used to determine the correct local time by selecting the geographic
region, country, and time zone. Setting the time zone allows the system to automatically correct for
regional time changes, such as daylight savings time, and perform other time zone related
functions properly.

The example shown here is for a machine located in the mainland time zone of Spain, Europe. The
selections will vary according to the geographical location.

Time Zone 3elector
Select a region

Africa

fimerica —— North and South
fAintarctica

Arctic Ocean

A=ia

Atlantic Ocean

Australia

Indian Ocean

PFacific Ocean

uUTC

oD OE] - O L e L [

<Cancel>

Figure 35. Select a Region

59

The appropriate region is selected using the arrow keys and then pressing Enter .

Countries in Europe
Select a country or region

32 Moldowa (Republic of)
31 Monaco

32 Montenegro

33 HNetherlands

31 HNorway

35 Poland

36 Portugal

37 Romania

3% Russian Federation
39 San Marino

40 Serbia

41 Slovakia

4 Slovenia
43MSpain|

44 Sweden

45 Switzerland

<Cancel>

Figure 36. Select a Country

Select the appropriate country using the arrow keys and press Enter .

Countries in Europe
Select a country or region

38 Moldova (Republic of)
31 Monaco
32 Montenegro
33 HNetherlands
Spain Time Zones
3elect a zone which obzerves the same time as your locality.

1MSpain (mainland)
Z Ceuta, Melilla
3 Canary Islands

<Cancel>

45 Switzerland

<Cancel>

Figure 37. Select a Time Zone

The appropriate time zone is selected using the arrow keys and pressing Enter .

60

Countries in Europe
Select a country or region

32 Moldova (Republic of)
31 Monaco

32 Montenegro

33 Hetherlands

Spain Time Zones
Select a zone which observes the same time as your locality.
Conf irmation
Does the abbreviation "CET' look reasonable?

< No >

{Cancel >

45 Switzerland

<Cancel>

Figure 38. Confirm Time Zone

Confirm the abbreviation for the time zone is correct.

FreeBSD Installer

Time & Date
Month Year

February] 2020

Sun Mon Hed Thu Fri Sat
1

2 3 5 b 7 8

9 10 12 13 14 15
16 17 19 20 21 22
3 24 2b E 28 29

<Set Date>

Figure 39. Select Date

The appropriate date is selected using the arrow keys and then pressing [Set Date]. Otherwise, the
date selection can be skipped by pressing [Skip 1.

61

FreeB5D Installer

Time & Date
[ZB :[95 :[24

<Set Timed

Figure 40. Select Time

The appropriate time is selected using the arrow keys and then pressing [Set Time]. Otherwise,
the time selection can be skipped by pressing [Skip].

2.8.3. Enabling Services

The next menu is used to configure which system services will be started whenever the system
boots. All of these services are optional. Only start the services that are needed for the system to
function.

FreeB3D Installer

System Configuration
Choose the services you would like to be started at boot:

local_unbound@Local caching walidating resolver

s=hd Secure shell daemon

moused P5-2 mouse pointer on console

ntpdate synchronize system and network time at bootime
ntpd Synchronize system and network time

powerd Ad just CPU frequency dymnamically if supported

dumpdev Enable kernel crash dumps to ~svar-crash

Figure 41. Selecting Additional Services to Enable

62

Here is a summary of the services which can be enabled in this menu:

* local_unbound - Enable the DNS local unbound. It is necessary to keep in mind that this is the
unbound of the base system and is only meant for use as a local caching forwarding resolver. If
the objective is to set up a resolver for the entire network install dns/unbound.

* sshd - The Secure Shell (SSH) daemon is used to remotely access a system over an encrypted
connection. Only enable this service if the system should be available for remote logins.

* moused - Enable this service if the mouse will be used from the command-line system console.

* ntpdate - Enable the automatic clock synchronization at boot time. The functionality of this
program is now available in the ntpd(8) daemon. After a suitable period of mourning, the
ntpdate(8) utility will be retired.

* ntpd - The Network Time Protocol (NTP) daemon for automatic clock synchronization. Enable
this service if there is a Windows®, Kerberos, or LDAP server on the network.

* powerd - System power control utility for power control and energy saving.

* dumpdev - Enabling crash dumps is useful in debugging issues with the system, so users are
encouraged to enable crash dumps.

2.8.4. Enabling Hardening Security Options

The next menu is used to configure which security options will be enabled. All of these options are
optional. But their use is encouraged.

FreeBSD Installer

System Hardening .
Choose system security hardening options:

[180 hide_uids|

[11 hide_gids Hide processes running as other groups

[12 hide_jail Hide processes running in jails

[13 read_msgbuf Dizable reading kernel message buffer for unpriwvil
[1 4 proc_debug Dizable process debugging facilities for unpriwvile
[15 random_pid Randomize the FID of newly created processes

[16 clear_tmp Clean the ~tmp filesystem on system startup

[17 dizsable sy=slogd Disable opening Syslogd network socket (disables r
[18 disable _sendmailDisable Sendmail serwvice

[19 secure_conzole Enable console password prompt

[1 1% disabhle ddtracelisallow DTrace destructive-mode

Figure 42. Selecting Hardening Security Options

Here is a summary of the options which can be enabled in this menu:

* hide_uids - Hide processes running as other users to prevent the unprivileged users to see other
running processes in execution by other users (UID) preventing information leakage.

63

https://cgit.freebsd.org/ports/tree/dns/unbound/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=ntpd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ntpdate&sektion=8&format=html

hide_gids - Hide processes running as other groups to prevent the unprivileged users to see
other running processes in execution by other groups (GID) preventing information leakage.

hide_jail - Hide processes running in jails to prevent the unprivileged users to see processes
running inside the jails.

read_msgbuf - Disabling reading kernel message buffer for unprivileged users prevent from
using dmesg(8) to view messages from the kernel’s log buffer.

proc_debug - Disabling process debugging facilities for unprivileged users disables a variety of
unprivileged inter-process debugging services, including some procfs functionality, ptrace(), and
ktrace(). Please note that this will also prevent debugging tools, for instance lldb(1), truss(1),
procstat(1l), as well as some built-in debugging facilities in certain scripting language like PHP,
etc., from working for unprivileged users.

random_pid - Randomize the PID of newly created processes.
clear_tmp - Clean /tmp when the system starts up.

disable_syslogd - Disable opening syslogd network socket. By default FreeBSD runs syslogd in a
secure way with -s. That prevents the daemon from listening for incoming UDP requests at port
514. With this option enabled syslogd will run with the flag -ss which prevents syslogd from
opening any port. To get more information consult syslogd(8).

disable_sendmail - Disable the sendmail mail transport agent.

secure_console - When this option is enabled, the prompt requests the root password when
entering single-user mode.

disable_ddtrace - DTrace can run in a mode that will actually affect the running kernel.
Destructive actions may not be used unless they have been explicitly enabled. To enable this
option when using DTrace use -w. To get more information consult dtrace(1).

2.8.5. Add Users

The next menu prompts to create at least one user account. It is recommended to login to the
system using a user account rather than as root. When logged in as root, there are essentially no
limits or protection on what can be done. Logging in as a normal user is safer and more secure.

Select [Yes] to add new users.

64

https://www.freebsd.org/cgi/man.cgi?query=dmesg&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=lldb&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=truss&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=procstat&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=syslogd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=dtrace&sektion=1&format=html

FreeB5D Installer

Add User Accounts
Would you like to add
u=zers to the installed
system now?

—— 4 == == == 4

Figure 43. Add User Accounts

Follow the prompts and input the requested information for the user account. The example shown
in Enter User Information creates the asample user account.

FreeBSD Installer
Add Users

sername: asample
Full nmame: Arthur Sample

id (Leave empty for default):
Login group [asamplel:
Login group is asample. Invite aszample into other groups? [1: wheel
Login class [default]:
Ghell (sh csh tcsh nologin) [shl: csh

ome directory [+home-sasamplel:

ome directory permissions (Leave empty for default):
ze password-based authentication? [yesl:

ze an empty password? (yessnol) [nol:

=& a random password? (yessmol) [nol:

nter password:

nter password again:

ock out the account after creation? [nol: |

Figure 44. Enter User Information
Here is a summary of the information to input:

* Username - The name the user will enter to log in. A common convention is to use the first letter
of the first name combined with the last name, as long as each username is unique for the
system. The username is case sensitive and should not contain any spaces.

* Full name - The user’s full name. This can contain spaces and is used as a description for the

user account.
 Uid - User ID. Typically, this is left blank so the system will assign a value.
* Login group - The user’s group. Typically this is left blank to accept the default.

e Invite user into other groups? - Additional groups to which the user will be added as a
member. If the user needs administrative access, type wheel here.

* Login class - Typically left blank for the default.

* Shell - Type in one of the listed values to set the interactive shell for the user. Refer to “Shells”
for more information about shells.

* Home directory - The user’s home directory. The default is usually correct.

* Home directory permissions - Permissions on the user’s home directory. The default is usually
correct.

* Use password-based authentication? - Typically yes so that the user is prompted to input their
password at login.

* Use an empty password? - Typically no as it is insecure to have a blank password.

* Use a random password? - Typically no so that the user can set their own password in the next
prompt.

* Enter password - The password for this user. Characters typed will not show on the screen.
* Enter password again - The password must be typed again for verification.

* Lock out the account after creation? - Typically no so that the user can login.

After entering everything, a summary is shown for review. If a mistake was made, enter no and try
again. If everything is correct, enter yes to create the new user.

Login group [asamplel:

Login group iz asample. Invite azample into other groupsY [1: wheel
Login class [default]:

Ghell (sh csh tcsh nologin) [shl: csh

ome directory [+home-sasamplel:

ome directory permissions (Leave empty for default):
ze password-based authentication? [yesl:

=e an empty password? (yessno) [nol:

=g a random password? (yessmol) [nol:

nter password:

nter password again:

ock out the account after creation? [nol:

azample
o -BE BE B

firthur Sample
1001

azample wheel
shomesasample

binscsh

no
OK? (yessnold: yes
dduser: INF0O: Successfully added (asample) to the user database.
Aidd another user? (yes- nol:

Figure 45. Exit User and Group Management

If there are more users to add, answer the Add another user? question with yes. Enter no to finish

66

../basics/index.html#shells

adding users and continue the installation.

For more information on adding users and user management, see “Users and Basic Account
Management”.

2.8.6. Final Configuration

After everything has been installed and configured, a final chance is provided to modify settings.

FreeBSD Installer

Final Configuration
Setup of your FreeBSD system is nearly complete. You can now modify
your configuration choices. After this screen, you will have an
opportunity to make more complex changes using a shell.

Exit fipply conf iguration and exit installer

Add User Add a user to the system

Root Password Change root password

Hostname Set system hostname

Network Networking configuration

Services Set daemons to run on startup

system Hardening 3et security options

Time Zone Set system timezone

Handbook Install FreeBSD Handbook (requires network)

Figure 46. Final Configuration

Use this menu to make any changes or do any additional configuration before completing the
installation.

* Add User - Described in Add Users.

* Root Password - Described in Setting the root Password.

* Hostname - Described in Setting the Hostname.

* Network - Described in Configuring Network Interfaces.

» Services - Described in Enabling Services.

» System Hardening - Described in Enabling Hardening Security Options.

* Time Zone - Described in Setting the Time Zone.

¢ Handbook - Download and install the FreeBSD Handbook.

After any final configuration is complete, select [Exit].

67

../basics/index.html#users-synopsis
../basics/index.html#users-synopsis

FreeB5D Installer

Manual Configuration
The installation is now finished.
Before exiting the installer, would
you like to open a shell in the new
zystem to make any final manual

modifications?

- mE omm mm m=m=

Figure 47. Manual Configuration

bsdinstall will prompt if there are any additional configuration that needs to be done before
rebooting into the new system. Select [Yes] to exit to a shell within the new system or [No] to
proceed to the last step of the installation.

FreeB5D Installer

Complete
Installation of FreeB3D
completet Would you like
to reboot into the

installed system now?

FROTTIEE <Live CD>

e e

Figure 48. Complete the Installation

If further configuration or special setup is needed, select [Live CD] to boot the install media into
Live CD mode.

If the installation is complete, select [Reboot] to reboot the computer and start the new FreeBSD
system. Do not forget to remove the FreeBSD install media or the computer may boot from it again.

68

As FreeBSD boots, informational messages are displayed. After the system finishes booting, a login
prompt is displayed. At the login: prompt, enter the username added during the installation. Avoid
logging in as root. Refer to “The Superuser Account” for instructions on how to become the
superuser when administrative access is needed.

The messages that appeared during boot can be reviewed by pressing Scroll-Lock to turn on the
scroll-back buffer. The PgUp, PgDn, and arrow keys can be used to scroll back through the messages.
When finished, press Scroll-Lock again to unlock the display and return to the console. To review
these messages once the system has been up for some time, type less /var/run/dmesg.boot from a
command prompt. Press q to return to the command line after viewing.

If sshd was enabled in Selecting Additional Services to Enable, the first boot may be a bit slower as
the system will generate the RSA and DSA keys. Subsequent boots will be faster. The fingerprints of
the keys will be displayed, as seen in this example:

69

../basics/index.html#users-superuser

Generating public/private rsal key pair.

Your identification has been saved in /etc/ssh/ssh_host_key.

Your public key has been saved in /etc/ssh/ssh_host_key.pub.

The key fingerprint is:

10:30:f5:af:93:ae:a3:1a:b2:bb:3c:35:d9:5a:b3:f3 root@Emachine3.example.com
The key's randomart image is:

+--[RSAT 1024]----+

| 0.. |

|
|
|
|
lo . +* |
|
|
-

Generating public/private dsa key pair.

Your identification has been saved in /etc/ssh/ssh_host_dsa_key.

Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.

The key fingerprint is:

7e:1c:ce:dc:8a:3a:18:13:5b:34:b5:cf:d9:d1:47:b2 root@emachine3.example.com
The key's randomart image is:

+--[DSA 1024]----+

| _
| c]
| . E .|
| .. .
| + S =, |
| : |
| + ., |
| . |
| |
.

Starting sshd.

Refer to OpenSSH for more information about fingerprints and SSH.

FreeBSD does not install a graphical environment by default. Refer to The X Window System for
more information about installing and configuring a graphical window manager.

Proper shutdown of a FreeBSD computer helps protect data and hardware from damage. Do not
turn off the power before the system has been properly shut down! If the user is a member of the
wheel group, become the superuser by typing su at the command line and entering the root
password. Then, type shutdown -p now and the system will shut down cleanly, and if the hardware
supports it, turn itself off.

70

../security/index.html#openssh
../x11/index.html#x11

2.9. Network Interfaces

2.9.1. Configuring Network Interfaces

Next, a list of the network interfaces found on the computer is shown. Select the interface to
configure.

FreeB3D Installer

Network Configuration
Please select a network interface to configure:

l =mOMIntel (R) PRO-100O Network Connection

<Cancel>

Figure 49. Choose a Network Interface

If an Ethernet interface is selected, the installer will skip ahead to the menu shown in Choose IPv4
Networking. If a wireless network interface is chosen, the system will instead scan for wireless
access points:

71

FreeB5D Installer

Scanning
Waiting 5 seconds to scan for
wireless networks. ..

+
1
1
1
1
(]
1
(]
1
1
1

+
1
1

<Cancel>

Figure 50. Scanning for Wireless Access Points

Wireless networks are identified by a Service Set Identifier (SSID), a short, unique name given to
each network. SSIDs found during the scan are listed, followed by a description of the encryption
types available for that network. If the desired SSID does not appear in the list, select [Rescan] to
scan again. If the desired network still does not appear, check for problems with antenna
connections or try moving the computer closer to the access point. Rescan after each change is
made.

FreeBSD Installer

Network 3Selection
Select a wireless network to connect to.

Giftshop [WEF1L[ESS]

penguin [WPA-PSK-TKIP+CCHMP 1[WPAZ-PSK-TKIP+CCHMPILESS]
Krocogator? [WPA-PSK-TKIP 1[WPAZ-PSK-TKIP-preauthl[ES3]
MostlyHarmless [ESS]

randomnet [WPA-PSK-TKIP+CCHP 1[WPAZ-PSK-TKIP+CCHMPILESS]
Otherwise [ESS]

=ampleoffice [WPAZ2-PSK-CCMP1[ESS]
YetfAinother [WEFP1[ESS]

d mm mm mm m- e = - -
o mE omE mE mE mE mE mE mE mE mE me == ==

Figure 51. Choosing a Wireless Network

Next, enter the encryption information for connecting to the selected wireless network. WPA2
encryption is strongly recommended as older encryption types, like WEP, offer little security. If the

72

network uses WPA2, input the password, also known as the Pre-Shared Key (PSK). For security
reasons, the characters typed into the input box are displayed as asterisks.

FreeBSD Installer

WPA Setup

<Cancel>

Figure 52. WPAZ2 Setup

Next, choose whether or not an IPv4 address should be configured on the Ethernet or wireless
interface:

FreeBSD Installer

Network Configuration
Would you like to

conf igure IPv4 for this
interface?

e

Figure 53. Choose IPv4 Networking

There are two methods of IPv4 configuration. DHCP will automatically configure the network
interface correctly and should be used if the network provides a DHCP server. Otherwise, the
addressing information needs to be input manually as a static configuration.

73

Do not enter random network information as it will not work. If a DHCP server is
not available, obtain the information listed in Required Network Information from
the network administrator or Internet service provider.

If a DHCP server is available, select [Yes] in the next menu to automatically configure the network
interface. The installer will appear to pause for a minute or so as it finds the DHCP server and
obtains the addressing information for the system.

FreeB3D Installer

Network Configuration
Would you like to use
DHCF to confiqure this
interface?

Figure 54. Choose IPv4DHCP Configuration

If a DHCP server is not available, select [No] and input the following addressing information in
this menu:

74

FreeB5D Installer

Network Configuration
Static Network Interface Configuration

iIP Address 192 .0.2.142
iSubnet Mask 255.255.255.0
iDefault Router 192 .0.2.1

+
1
1
1
1
1
1
(]
1
(]
1
1
1
1
1

+
(]
1

{Cancel >

Figure 55. IPv4 Static Configuration
» IP Address - The IPv4 address assigned to this computer. The address must be unique and not
already in use by another piece of equipment on the local network.
* Subnet Mask - The subnet mask for the network.
» Default Router - The IP address of the network’s default gateway.

The next screen will ask if the interface should be configured for IPv6. If IPv6 is available and
desired, choose [Yes] to select it.

FreeBSD Installer

Network Configuration
Would you like to

conf igure IPvb for this
interface?

—— 4 == == == 4

Figure 56. Choose IPv6 Networking

75

IPv6 also has two methods of configuration. StateLess Address AutoConfiguration (SLAAC) will
automatically request the correct configuration information from a local router. Refer to rfc4862
for more information. Static configuration requires manual entry of network information.

If an IPv6 router is available, select [Yes] in the next menu to automatically configure the network
interface. The installer will appear to pause for a minute or so as it finds the router and obtains the
addressing information for the system.

FreeBSD Installer

Network Configuration
Would you like to try
stateless address
autoconf iguration
(SLAAC)?

Figure 57. Choose IPv6 SLAAC Configuration

If an IPv6 router is not available, select [No] and input the following addressing information in
this menu:

76

http://tools.ietf.org/html/rfc4862

FreeB5D Installer

Network Configuration
Static IPv6 Network Interface Configuration

iIFPuvb Address 2001 :4dbB:4672 6565 :2026:5043: 2442 : 534464
iDefault Router ~dololBEilitiHe Y- il i

<Cancel>

Figure 58. IPv6 Static Configuration

» IPv6 Address - The IPv6 address assigned to this computer. The address must be unique and not
already in use by another piece of equipment on the local network.

* Default Router - The IPv6 address of the network’s default gateway.

The last network configuration menu is used to configure the Domain Name System (DNS) resolver,
which converts hostnames to and from network addresses. If DHCP or SLAAC was used to
autoconfigure the network interface, the Resolver Configuration values may already be filled in.
Otherwise, enter the local network’s domain name in the Search field. DNS #1 and DNS #2 are the
IPv4 and/or IPv6 addresses of the DNS servers. At least one DNS server is required.

77

FreeB5D Installer

Network Configuration
Resolver Configuration

iSearch example .com

i IPU6 DNS Z001:dbB:35::
i IPvb DNS 2001 :dbB:53::
iIPv4 DNS

iIPv4 DNS

- mE me mm omm mE mE = ==

<Cancel>

Figure 59. DNS Configuration

Once the interface is configured, select a mirror site that is located in the same region of the world
as the computer on which FreeBSD is being installed. Files can be retrieved more quickly when the
mirror is close to the target computer, reducing installation time.

Mirror Selection +

Please select the site closest to you or “other" if you'd like |
to specify a different choice. fAlso note that not every site i
listed here carries more than the base distribution kits. Only |
Primary sites are guaranteed to carry the full range of i
possihle distributions. Select a site that's close! i
——_——————_ i
= =
i ftp:-ssnapshots. jp.freebsd.orgy Snapshots Server Japan i
i ftp:sssnapshots . se . freebsd . org 3napshots Server Sweden i
i ftp:ssftp.freeb=sd.org IPub Hain Site i
i ftp:rsftp3d.ie.freeb=d.org IPuvb6 Ireland i
i ftp:rsftp.il.freebsd.org IPvb Israel i
i ftp:rftpZ. jp.freebsd.oryg IPvb Japan i
i ftp:rsftpd.se.freebsd.org IPuvb Sweden i
i ftp:ssftp4.us.freeb=sd.org IPub USA i
i ftp:rrftpe. tr.freebsd.org IPuvb6 Turkey i
i ftp:rsftpl.freeb=sd.org Primary i
+ i
1

i

+

i

Figure 60. Choosing a Mirror

2.10. Troubleshooting

This section covers basic installation troubleshooting, such as common problems people have
reported.

78

Check the Hardware Notes (https://www.freebsd.org/releases/) document for the version of FreeBSD
to make sure the hardware is supported. If the hardware is supported and lock-ups or other
problems occur, build a custom kernel using the instructions in Configuring the FreeBSD Kernel to
add support for devices which are not present in the GENERIC kernel. The default kernel assumes
that most hardware devices are in their factory default configuration in terms of IRQs, I/O
addresses, and DMA channels. If the hardware has been reconfigured, a custom Kkernel
configuration file can tell FreeBSD where to find things.

Some installation problems can be avoided or alleviated by updating the firmware

on various hardware components, most notably the motherboard. Motherboard

firmware is usually referred to as the BIOS. Most motherboard and computer
o manufacturers have a website for upgrades and upgrade information.

Manufacturers generally advise against upgrading the motherboard BIOS unless
there is a good reason for doing so, like a critical update. The upgrade process can
go wrong, leaving the BIOS incomplete and the computer inoperative.

If the system hangs while probing hardware during boot, or it behaves strangely during install,
ACPI may be the culprit. FreeBSD makes extensive use of the system ACPI service on the 1386 and
amd64 platforms to aid in system configuration if it is detected during boot. Unfortunately, some
bugs still exist in both the ACPI driver and within system motherboards and BIOS firmware. ACPI
can be disabled by setting the hint.acpi.0.disabled hint in the third stage boot loader:

set hint.acpi.@.disabled="1"

This is reset each time the system is booted, so it is necessary to add hint.acpi.0.disabled="1" to the
file /boot/loader.conf. More information about the boot loader can be found in “Synopsis”.

2.11. Using the Live CD

The welcome menu of bsdinstall, shown in Welcome Menu, provides a [Live CD] option. This is
useful for those who are still wondering whether FreeBSD is the right operating system for them
and want to test some of the features before installing.

The following points should be noted before using the [Live CD]:

* To gain access to the system, authentication is required. The username is root and the password
is blank.

* As the system runs directly from the installation media, performance will be significantly
slower than that of a system installed on a hard disk.

 This option only provides a command prompt and not a graphical interface.

79

https://www.FreeBSD.org/releases/
../kernelconfig/index.html#kernelconfig
../boot/index.html#boot-synopsis

Chapter 3. FreeBSD Basics

3.1. Synopsis

This chapter covers the basic commands and functionality of the FreeBSD operating system. Much
of this material is relevant for any UNIX®-like operating system. New FreeBSD users are
encouraged to read through this chapter carefully.

After reading this chapter, you will know:

* How to use and configure virtual consoles.

* How to create and manage users and groups on FreeBSD.

* How UNIX® file permissions and FreeBSD file flags work.

» The default FreeBSD file system layout.

» The FreeBSD disk organization.

* How to mount and unmount file systems.

* What processes, daemons, and signals are.

* What a shell is, and how to change the default login environment.
* How to use basic text editors.

* What devices and device nodes are.

* How to read manual pages for more information.

3.2. Virtual Consoles and Terminals

Unless FreeBSD has been configured to automatically start a graphical environment during startup,
the system will boot into a command line login prompt, as seen in this example:

FreeBSD/amd64 (pc3.example.org) (ttyv@)

login:

The first line contains some information about the system. The amd64 indicates that the system in
this example is running a 64-bit version of FreeBSD. The hostname is pc3.example.org, and ttyv0
indicates that this is the "system console". The second line is the login prompt.

Since FreeBSD is a multiuser system, it needs some way to distinguish between different users. This
is accomplished by requiring every user to log into the system before gaining access to the
programs on the system. Every user has a unique name "username” and a personal "password".

To log into the system console, type the username that was configured during system installation,
as described in Add Users, and press Enter . Then enter the password associated with the username
and press Enter . The password is not echoed for security reasons.

80

../bsdinstall/index.html#bsdinstall-addusers

Once the correct password is input, the message of the day (MOTD) will be displayed followed by a
command prompt. Depending upon the shell that was selected when the user was created, this
prompt will be a #, $, or % character. The prompt indicates that the user is now logged into the
FreeBSD system console and ready to try the available commands.

3.2.1. Virtual Consoles

While the system console can be used to interact with the system, a user working from the
command line at the keyboard of a FreeBSD system will typically instead log into a virtual console.
This is because system messages are configured by default to display on the system console. These
messages will appear over the command or file that the user is working on, making it difficult to
concentrate on the work at hand.

By default, FreeBSD is configured to provide several virtual consoles for inputting commands. Each
virtual console has its own login prompt and shell and it is easy to switch between virtual consoles.
This essentially provides the command line equivalent of having several windows open at the same
time in a graphical environment.

The key combinations Alt + F1 through Alt + F8 have been reserved by FreeBSD for switching
between virtual consoles. Use Alt + F1 to switch to the system console (ttyv0), Alt + F2 to access the
first virtual console (ttyv1), Alt + F3 to access the second virtual console (ttyv2), and so on. When
using Xorg as a graphical console, the combination becomes Ctrl + Alt + F1 toreturn to a text-based
virtual console.

When switching from one console to the next, FreeBSD manages the screen output. The result is an
illusion of having multiple virtual screens and keyboards that can be used to type commands for
FreeBSD to run. The programs that are launched in one virtual console do not stop running when
the user switches to a different virtual console.

Refer to kbdcontrol(1), vidcontrol(1), atkbd(4), syscons(4), and vt(4) for a more technical description
of the FreeBSD console and its keyboard drivers.

In FreeBSD, the number of available virtual consoles is configured in this section of /etc/ttys:

name getty type status comments
#

ttyv®@ "/usr/libexec/getty Pc" xterm on secure
Virtual terminals

ttyvl "/usr/libexec/getty Pc" xterm on secure
ttyv2 "/usr/libexec/getty Pc" xterm on secure
ttyv3 "/usr/libexec/getty Pc" xterm on secure
ttyvd "/usr/libexec/getty Pc" xterm on secure
ttyv5 "/usr/libexec/getty Pc" xterm on secure
ttyv6 "/usr/libexec/getty Pc" xterm on secure
ttyv7 "/usr/libexec/getty Pc" xterm on secure

ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure

To disable a virtual console, put a comment symbol (#) at the beginning of the line representing that
virtual console. For example, to reduce the number of available virtual consoles from eight to four,

81

https://www.freebsd.org/cgi/man.cgi?query=kbdcontrol&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=vidcontrol&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=atkbd&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=syscons&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=vt&sektion=4&format=html

put a # in front of the last four lines representing virtual consoles ttyv5 through ttyv8. Do not
comment out the line for the system console ttyv0. Note that the last virtual console (ttyv8) is used
to access the graphical environment if Xorg has been installed and configured as described in The X
Window System.

For a detailed description of every column in this file and the available options for the virtual
consoles, refer to ttys(5).

3.2.2. Single User Mode

The FreeBSD boot menu provides an option labelled as "Boot Single User". If this option is selected,
the system will boot into a special mode known as "single user mode". This mode is typically used to
repair a system that will not boot or to reset the root password when it is not known. While in
single user mode, networking and other virtual consoles are not available. However, full root
access to the system is available, and by default, the root password is not needed. For these reasons,
physical access to the keyboard is needed to boot into this mode and determining who has physical
access to the keyboard is something to consider when securing a FreeBSD system.

The settings which control single user mode are found in this section of /etc/ttys:

name getty type status comments

i

If console is marked "insecure", then init will ask for the root password
when going to single-user mode.

console none unknown off secure

By default, the status is set to secure. This assumes that who has physical access to the keyboard is
either not important or it is controlled by a physical security policy. If this setting is changed to
insecure, the assumption is that the environment itself is insecure because anyone can access the
keyboard. When this line is changed to insecure, FreeBSD will prompt for the root password when a
user selects to boot into single user mode.

Be careful when changing this setting to insecure! If the root password is forgotten,

o booting into single user mode is still possible, but may be difficult for someone
who is not familiar with the FreeBSD booting process.

3.2.3. Changing Console Video Modes

The FreeBSD console default video mode may be adjusted to 1024x768, 1280x1024, or any other size
supported by the graphics chip and monitor. To use a different video mode load the VESA module:

kldload vesa

To determine which video modes are supported by the hardware, use vidcontrol(1). To get a list of
supported video modes issue the following:

82

../x11/index.html#x11
../x11/index.html#x11
https://www.freebsd.org/cgi/man.cgi?query=ttys&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=vidcontrol&sektion=1&format=html

vidcontrol -i mode

The output of this command lists the video modes that are supported by the hardware. To select a
new video mode, specify the mode using vidcontrol(1) as the root user:

vidcontrol MODE_279
If the new video mode is acceptable, it can be permanently set on boot by adding it to /etc/rc.conf:

allscreens_flags="MODE_279"

3.3. Users and Basic Account Management

FreeBSD allows multiple users to use the computer at the same time. While only one user can sit in
front of the screen and use the keyboard at any one time, any number of users can log in to the
system through the network. To use the system, each user should have their own user account.

This chapter describes:

The different types of user accounts on a FreeBSD system.

How to add, remove, and modify user accounts.
* How to set limits to control the resources that users and groups are allowed to access.

* How to create groups and add users as members of a group.

3.3.1. Account Types

Since all access to the FreeBSD system is achieved using accounts and all processes are run by
users, user and account management is important.

There are three main types of accounts: system accounts, user accounts, and the superuser account.

3.3.1.1. System Accounts

System accounts are used to run services such as DNS, mail, and web servers. The reason for this is
security; if all services ran as the superuser, they could act without restriction.

Examples of system accounts are daemon, operator, bind, news, and www.

Care must be taken when using the operator group, as unintended superuser-like
A access privileges may be granted, including but not limited to shutdown, reboot,
and access to all items in /dev in the group.

nobody is the generic unprivileged system account. However, the more services that use nobody, the

more files and processes that user will become associated with, and hence the more privileged that
user becomes.

83

https://www.freebsd.org/cgi/man.cgi?query=vidcontrol&sektion=1&format=html

3.3.1.2. User Accounts

User accounts are assigned to real people and are used to log in and use the system. Every person
accessing the system should have a unique user account. This allows the administrator to find out
who is doing what and prevents users from clobbering the settings of other users.

Each user can set up their own environment to accommodate their use of the system, by
configuring their default shell, editor, key bindings, and language settings.

Every user account on a FreeBSD system has certain information associated with it:

User name

The user name is typed at the login: prompt. Each user must have a unique user name. There
are a number of rules for creating valid user names which are documented in passwd(5). It is
recommended to use user names that consist of eight or fewer, all lower case characters in order
to maintain backwards compatibility with applications.

Password

Each account has an associated password.

User ID (UID)

The User ID (UID) is a number used to uniquely identify the user to the FreeBSD system.
Commands that allow a user name to be specified will first convert it to the UID. It is
recommended to use a UID less than 65535, since higher values may cause compatibility issues
with some software.

Group ID (GID)

The Group ID (GID) is a number used to uniquely identify the primary group that the user
belongs to. Groups are a mechanism for controlling access to resources based on a user’s GID
rather than their UID. This can significantly reduce the size of some configuration files and
allows users to be members of more than one group. It is recommended to use a GID of 65535 or
lower as higher GIDs may break some software.

Login class

Login classes are an extension to the group mechanism that provide additional flexibility when
tailoring the system to different users. Login classes are discussed further in Configuring Login
Classes.

Password change time

By default, passwords do not expire. However, password expiration can be enabled on a per-
user basis, forcing some or all users to change their passwords after a certain amount of time
has elapsed.

Account expiration time

By default, FreeBSD does not expire accounts. When creating accounts that need a limited
lifespan, such as student accounts in a school, specify the account expiry date using pw(8). After
the expiry time has elapsed, the account cannot be used to log in to the system, although the
account’s directories and files will remain.

84

https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=5&format=html
../security/index.html#users-limiting
../security/index.html#users-limiting
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html

User’s full name

The user name uniquely identifies the account to FreeBSD, but does not necessarily reflect the
user’s real name. Similar to a comment, this information can contain spaces, uppercase
characters, and be more than 8 characters long.

Home directory

The home directory is the full path to a directory on the system. This is the user’s starting
directory when the user logs in. A common convention is to put all user home directories under
/home/username or /usr/home/username. Each user stores their personal files and
subdirectories in their own home directory.

User shell

The shell provides the user’s default environment for interacting with the system. There are
many different kinds of shells and experienced users will have their own preferences, which can
be reflected in their account settings.

3.3.1.3. The Superuser Account

The superuser account, usually called root, is used to manage the system with no limitations on
privileges. For this reason, it should not be used for day-to-day tasks like sending and receiving
mail, general exploration of the system, or programming.

The superuser, unlike other user accounts, can operate without limits, and misuse of the superuser
account may result in spectacular disasters. User accounts are unable to destroy the operating
system by mistake, so it is recommended to login as a user account and to only become the
superuser when a command requires extra privilege.

Always double and triple-check any commands issued as the superuser, since an extra space or
missing character can mean irreparable data loss.

There are several ways to gain superuser privilege. While one can log in as root, this is highly
discouraged.

Instead, use su(1) to become the superuser. If - is specified when running this command, the user
will also inherit the root user’s environment. The user running this command must be in the wheel
group or else the command will fail. The user must also know the password for the root user
account.

In this example, the user only becomes superuser in order to run make install as this step requires
superuser privilege. Once the command completes, the user types exit to leave the superuser
account and return to the privilege of their user account.

85

https://www.freebsd.org/cgi/man.cgi?query=su&sektion=1&format=html

Example 2. Install a Program As the Superuser

Password:
make install
exit

[
%

The built-in su(1) framework works well for single systems or small networks with just one system
administrator. An alternative is to install the security/sudo package or port. This software provides
activity logging and allows the administrator to configure which users can run which commands as
the superuser.

3.3.2. Managing Accounts

FreeBSD provides a variety of different commands to manage user accounts. The most common
commands are summarized in Utilities for Managing User Accounts, followed by some examples of
their usage. See the manual page for each utility for more details and usage examples.

Table 2. Utilities for Managing User Accounts

Command Summary

adduser(8) The recommended command-line application
for adding new users.

rmuser(8) The recommended command-line application
for removing users.

chpass(1) A flexible tool for changing user database
information.

passwd(1) The command-line tool to change user
passwords.

pw(8) A powerful and flexible tool for modifying all

aspects of user accounts.

3.3.2.1. adduser

The recommended program for adding new users is adduser(8). When a new user is added, this
program automatically updates /etc/passwd and /etc/group. It also creates a home directory for the
new user, copies in the default configuration files from /usr/share/skel, and can optionally mail the
new user a welcome message. This utility must be run as the superuser.

The adduser(8) utility is interactive and walks through the steps for creating a new user account. As
seen in Adding a User on FreeBSD, either input the required information or press Return to accept
the default value shown in square brackets. In this example, the user has been invited into the
wheel group, allowing them to become the superuser with su(1). When finished, the utility will

86

https://www.freebsd.org/cgi/man.cgi?query=su&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/security/sudo/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=adduser&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rmuser&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=chpass&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=adduser&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=adduser&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=su&sektion=1&format=html

prompt to either create another user or to exit.

Example 3. Adding a User on FreeBSD

adduser

Username: jru

Full name: J. Random User

Uid (Leave empty for default):

Login group [jru]:

Login group is jru. Invite jru into other groups? []: wheel
Login class [default]:

Shell (sh csh tesh zsh nologin) [sh]: zsh

Home directory [/home/jru]:

Home directory permissions (Leave empty for default):
Use password-based authentication? [yes]:

Use an empty password? (yes/no) [no]:

Use a random password? (yes/no) [no]:

Enter password:

Enter password again:

Lock out the account after creation? [no]:

Username : jru

Password : *¥***

Full Name : J. Random User

Uid : 1001

(lass

Groups : jru wheel

Home : /home/jru

Shell : /usr/local/bin/zsh
Locked : Nno

0K? (yes/no): yes

adduser: INFO: Successfully added (jru) to the user database.
Add another user? (yes/no): no

Goodbye!

i

o Since the password is not echoed when typed, be careful to not mistype the
password when creating the user account.

3.3.2.2. rmuser

To completely remove a user from the system, run rmuser(8) as the superuser. This command
performs the following steps:

1. Removes the user’s crontab(1) entry, if one exists.

2. Removes any at(1) jobs belonging to the user.

3. Kills all processes owned by the user.

4. Removes the user from the system’s local password file.

87

https://www.freebsd.org/cgi/man.cgi?query=rmuser&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=crontab&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=at&sektion=1&format=html

Optionally removes the user’s home directory, if it is owned by the user.
Removes the incoming mail files belonging to the user from /var/mail.

Removes all files owned by the user from temporary file storage areas such as /tmp.

N o U

Finally, removes the username from all groups to which it belongs in /etc/group. If a group
becomes empty and the group name is the same as the username, the group is removed. This
complements the per-user unique groups created by adduser(8).

rmuser(8) cannot be used to remove superuser accounts since that is almost always an indication of
massive destruction.

By default, an interactive mode is used, as shown in the following example.

Example 4. rmuser Interactive Account Removal

rmuser jru

Matching password entry:

jru:*:1001:1001::0:0:3. Random User:/home/jru:/usr/local/bin/zsh
Is this the entry you wish to remove? y

Remove user's home directory (/home/jru)? vy

Removing user (jru): mailspool home passwd.

#

3.3.2.3. chpass

Any user can use chpass(1) to change their default shell and personal information associated with
their user account. The superuser can use this utility to change additional account information for
any user.

When passed no options, aside from an optional username, chpass(1) displays an editor containing
user information. When the user exits from the editor, the user database is updated with the new
information.

o This utility will prompt for the user’s password when exiting the editor, unless the
utility is run as the superuser.

In Using chpass as Superuser, the superuser has typed chpass jru and is now viewing the fields that

can be changed for this user If jru runs this command instead, only the last six fields will be
displayed and available for editing. This is shown in Using chpass as Regular User.

88

https://www.freebsd.org/cgi/man.cgi?query=adduser&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rmuser&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=chpass&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chpass&sektion=1&format=html

Example 5. Using chpass as Superuser

#Changing user database information for jru.
Login: jru

Password: *

Uid [#]: 1001

Gid [# or name]: 1001
Change [month day year]:
Expire [month day year]:
Class:

Home directory: /home/jru
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:

Office Phone:

Home Phone:

Other information:

Example 6. Using chpass as Regular User

#Changing user database information for jru.
Shell: /usr/local/bin/zsh

Full Name: J. Random User

Office Location:

Office Phone:

Home Phone:

Other information:

The commands chifn(1) and chsh(1) are links to chpass(1), as are ypchpass(1),

o ypchin(1l), and ypchsh(1). Since NIS support is automatic, specifying the yp before
the command is not necessary. How to configure NIS is covered in Network
Servers.

3.3.2.4. passwd

Any user can easily change their password using passwd(1). To prevent accidental or unauthorized
changes, this command will prompt for the user’s original password before a new password can be
set:

89

https://www.freebsd.org/cgi/man.cgi?query=chfn&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chsh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chpass&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ypchpass&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ypchfn&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ypchsh&sektion=1&format=html
../network-servers/index.html#network-servers
../network-servers/index.html#network-servers
https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html

Example 7. Changing Your Password

% passwd

Changing local password for jru.
Old password:

New password:

Retype new password:

passwd: updating the database...
passwd: done

The superuser can change any user’s password by specifying the username when running
passwd(1). When this utility is run as the superuser, it will not prompt for the user’s current
password. This allows the password to be changed when a user cannot remember the original
password.

Example 8. Changing Another User’s Password as the Superuser

passwd jru

Changing local password for jru.
New password:

Retype new password:

passwd: updating the database...
passwd: done

o As with chpass(1), yppasswd(1) is a link to passwd(1), so NIS works with either
command.

3.3.2.5. pw

The pw(8) utility can create, remove, modify, and display users and groups. It functions as a front
end to the system user and group files. pw(8) has a very powerful set of command line options that
make it suitable for use in shell scripts, but new users may find it more complicated than the other
commands presented in this section.

3.3.3. Managing Groups

A group is a list of users. A group is identified by its group name and GID. In FreeBSD, the kernel
uses the UID of a process, and the list of groups it belongs to, to determine what the process is
allowed to do. Most of the time, the GID of a user or process usually means the first group in the list.

The group name to GID mapping is listed in /etc/group. This is a plain text file with four colon-
delimited fields. The first field is the group name, the second is the encrypted password, the third
the GID, and the fourth the comma-delimited list of members. For a more complete description of
the syntax, refer to group(5).

90

https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chpass&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=yppasswd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=group&sektion=5&format=html

The superuser can modify /etc/group using a text editor. Alternatively, pw(8) can be used to add and
edit groups. For example, to add a group called teamtwo and then confirm that it exists:

Example 9. Adding a Group Using pw(8)

pw groupadd teamtwo
pw groupshow teamtwo
teamtwo:*:1100:

In this example, 1100 is the GID of teamtwo. Right now, teamtwo has no members. This command will
add jru as a member of teamtwo.

Example 10. Adding User Accounts to a New Group Using pw(8)

pw groupmod teamtwo -M jru
pw groupshow teamtwo
teamtwo:*:1100:jru

The argument to -M is a comma-delimited list of users to be added to a new (empty) group or to
replace the members of an existing group. To the user, this group membership is different from
(and in addition to) the user’s primary group listed in the password file. This means that the user
will not show up as a member when using groupshow with pw(8), but will show up when the
information is queried via id(1) or a similar tool. When pw(8) is used to add a user to a group, it
only manipulates /etc/group and does not attempt to read additional data from /etc/passwd.

Example 11. Adding a New Member to a Group Using pw(8)

pw groupmod teamtwo -m db
pw groupshow teamtwo
teamtwo:*:1100:jru,db

In this example, the argument to -m is a comma-delimited list of users who are to be added to the
group. Unlike the previous example, these users are appended to the group and do not replace
existing users in the group.

Example 12. Using id(1) to Determine Group Membership

% 1d jru
uid=1001(jru) gid=1001(jru) groups=1001(jru), 1100(teamtwo)

In this example, jru is a member of the groups jru and teamtwo.

91

https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=id&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=id&sektion=1&format=html

For more information about this command and the format of /etc/group, refer to pw(8) and
group(5).

3.4. Permissions

In FreeBSD, every file and directory has an associated set of permissions and several utilities are
available for viewing and modifying these permissions. Understanding how permissions work is
necessary to make sure that users are able to access the files that they need and are unable to
improperly access the files used by the operating system or owned by other users.

This section discusses the traditional UNIX® permissions used in FreeBSD. For finer grained file
system access control, refer to “Access Control Lists”.

In UNIX®, basic permissions are assigned using three types of access: read, write, and execute.
These access types are used to determine file access to the file’s owner, group, and others (everyone
else). The read, write, and execute permissions can be represented as the letters r, w, and x. They
can also be represented as binary numbers as each permission is either on or off (0). When
represented as a number, the order is always read as rwx, where r has an on value of 4, w has an on
value of 2 and x has an on value of 1.

Table 4.1 summarizes the possible numeric and alphabetic possibilities. When reading the
"Directory Listing" column, a - is used to represent a permission that is set to off.

Table 3. UNIX® Permissions

Value Permission Directory Listing
0 No read, no write, no execute -
1 No read, no write, execute --X
2 No read, write, no execute -W-
3 No read, write, execute -Wx
4 Read, no write, no execute r--
5 Read, no write, execute r-x
6 Read, write, no execute rw-
7 Read, write, execute rwx

Use the -1 argument to Is(1) to view a long directory listing that includes a column of information
about a file’s permissions for the owner, group, and everyone else. For example, an 1s -1 in an
arbitrary directory may show:

% 1s -1

total 530

-rw-r--r-- 1 root wheel 512 Sep 5 12:31 myfile
-rw-r--r-- 1 root wheel 512 Sep 5 12:31 otherfile
-rw-r--r-- 1 root wheel 7680 Sep 5 12:31 email.txt

92

https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=group&sektion=5&format=html
../security/index.html#fs-acl
https://www.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html

The first (leftmost) character in the first column indicates whether this file is a regular file, a
directory, a special character device, a socket, or any other special pseudo-file device. In this
example, the - indicates a regular file. The next three characters, rw- in this example, give the
permissions for the owner of the file. The next three characters, r--, give the permissions for the
group that the file belongs to. The final three characters, r--, give the permissions for the rest of the
world. A dash means that the permission is turned off. In this example, the permissions are set so
the owner can read and write to the file, the group can read the file, and the rest of the world can
only read the file. According to the table above, the permissions for this file would be 644, where
each digit represents the three parts of the file’s permission.

How does the system control permissions on devices? FreeBSD treats most hardware devices as a
file that programs can open, read, and write data to. These special device files are stored in /dev/.

Directories are also treated as files. They have read, write, and execute permissions. The executable
bit for a directory has a slightly different meaning than that of files. When a directory is marked
executable, it means it is possible to change into that directory using cd(1). This also means that it is
possible to access the files within that directory, subject to the permissions on the files themselves.

In order to perform a directory listing, the read permission must be set on the directory. In order to
delete a file that one knows the name of, it is necessary to have write and execute permissions to
the directory containing the file.

There are more permission bits, but they are primarily used in special circumstances such as setuid
binaries and sticky directories. For more information on file permissions and how to set them, refer
to chmod(1).

3.4.1. Symbolic Permissions

Symbolic permissions use characters instead of octal values to assign permissions to files or
directories. Symbolic permissions use the syntax of (who) (action) (permissions), where the
following values are available:

Option Letter Represents

(who) u User

(who) g Group owner

(who) 0 Other

(who) a All ("world")

(action) + Adding permissions
(action) - Removing permissions
(action) = Explicitly set permissions
(permissions) r Read

(permissions) w Write

(permissions) X Execute

(permissions) t Sticky bit

93

https://www.freebsd.org/cgi/man.cgi?query=cd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1&format=html

Option Letter Represents

(permissions) S Set UID or GID

These values are used with chmod(1), but with letters instead of numbers. For example, the
following command would block other users from accessing FILE:

% chmod go= FILE

A comma separated list can be provided when more than one set of changes to a file must be made.
For example, the following command removes the group and "world" write permission on FILE,
and adds the execute permissions for everyone:

0,

% chmod go-w,a+x FILE

3.4.2. FreeBSD File Flags

In addition to file permissions, FreeBSD supports the use of "file flags". These flags add an
additional level of security and control over files, but not directories. With file flags, even root can
be prevented from removing or altering files.

File flags are modified using chflags(1). For example, to enable the system undeletable flag on the
file filel, issue the following command:

chflags sunlink filel

To disable the system undeletable flag, put a "no" in front of the sunlink:
chflags nosunlink filel

To view the flags of a file, use -1o with Is(1):

1s -1lo filel

-rw-r--r-- 1 trhodes trhodes sunlnk @ Mar 1 05:54 filel

Several file flags may only be added or removed by the root user. In other cases, the file owner may
set its file flags. Refer to chflags(1) and chflags(2) for more information.

3.4.3. The setuid, setgid, and sticky Permissions

Other than the permissions already discussed, there are three other specific settings that all
administrators should know about. They are the setuid, setgid, and sticky permissions.

94

https://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chflags&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chflags&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chflags&sektion=2&format=html

These settings are important for some UNIX® operations as they provide functionality not normally
granted to normal users. To understand them, the difference between the real user ID and effective
user ID must be noted.

The real user ID is the UID who owns or starts the process. The effective UID is the user ID the
process runs as. As an example, passwd(1) runs with the real user ID when a user changes their
password. However, in order to update the password database, the command runs as the effective
ID of the root user. This allows users to change their passwords without seeing a Permission Denied
error.

The setuid permission may be set by prefixing a permission set with the number four (4) as shown
in the following example:

chmod 4755 suidexample.sh
The permissions on suidexample.sh now look like the following:
-rwsr-xr-x 1 trhodes trhodes 63 Aug 29 06:36 suidexample.sh

Note that a s is now part of the permission set designated for the file owner, replacing the
executable bit. This allows utilities which need elevated permissions, such as passwd(1).

The nosuid mount(8) option will cause such binaries to silently fail without alerting
o the user. That option is not completely reliable as a nosuid wrapper may be able to

circumvent it.

To view this in real time, open two terminals. On one, type passwd as a normal user. While it waits
for a new password, check the process table and look at the user information for passwd(1):

In terminal A:

Changing local password for trhodes
01d Password:

In terminal B:

ps aux | grep passwd

trhodes 5232 0.0 0.2 3420 1608 @ R+ 2:10AM 0:00.00 grep passwd
root 5211 0.0 0.2 3620 1724 2 I+ 2:09AM ©0:00.01 passwd

Although passwd(1) is run as a normal user, it is using the effective UID of root.

The setgid permission performs the same function as the setuid permission; except that it alters the

95

https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=mount&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=passwd&sektion=1&format=html

group settings. When an application or utility executes with this setting, it will be granted the
permissions based on the group that owns the file, not the user who started the process.

To set the setgid permission on a file, provide chmod(1) with a leading two (2):
chmod 2755 sgidexample.sh

In the following listing, notice that the s is now in the field designated for the group permission
settings:

-rwxr-sr-x 1 trhodes trhodes 44 Aug 31 01:49 sgidexample.sh

In these examples, even though the shell script in question is an executable file, it
o will not run with a different EUID or effective user ID. This is because shell scripts
may not access the setuid(2) system calls.

The setuid and setgid permission bits may lower system security, by allowing for elevated
permissions. The third special permission, the sticky bit, can strengthen the security of a system.

When the sticky bit is set on a directory, it allows file deletion only by the file owner. This is useful
to prevent file deletion in public directories, such as /tmp, by users who do not own the file. To
utilize this permission, prefix the permission set with a one (1):

chmod 1777 /tmp
The sticky bit permission will display as a t at the very end of the permission set:

1s -al / | grep tmp
drwxrwxrwt 10 root wheel 512 Aug 31 01:49 tmp

3.5. Directory Structure

The FreeBSD directory hierarchy is fundamental to obtaining an overall understanding of the
system. The most important directory is root or, "/". This directory is the first one mounted at boot
time and it contains the base system necessary to prepare the operating system for multi-user
operation. The root directory also contains mount points for other file systems that are mounted
during the transition to multi-user operation.

A mount point is a directory where additional file systems can be grafted onto a parent file system
(usually the root file system). This is further described in Disk Organization. Standard mount points
include /usr/, /var/, /tmp/, /mnt/, and /cdrom/. These directories are usually referenced to entries in
[etc/fstab. This file is a table of various file systems and mount points and is read by the system.

96

https://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=setuid&sektion=2&format=html

Most of the file systems in /etc/fstab are mounted automatically at boot time from the script rc(8)
unless their entry includes noauto. Details can be found in The fstab File.

A complete description of the file system hierarchy is available in hier(7). The following table
provides a brief overview of the most common directories.

Directory

/
/bin/

/boot/

/boot/defaults/

/dev/
letc/

/etc/defaults/

/etc/mail/

/etc/periodic/

/etc/ppp/

/mnt/

/proc/

/rescue/

/root/

/sbhin/

/tmp/

Jusr/

Description
Root directory of the file system.

User utilities fundamental to both single-user
and multi-user environments.

Programs and configuration files used during
operating system bootstrap.

Default boot configuration files. Refer to
loader.conf(5) for details.

Device nodes. Refer to intro(4) for details.
System configuration files and scripts.

Default system configuration files. Refer to rc(8)
for details.

Configuration files for mail transport agents
such as sendmail(8).

Scripts that run daily, weekly, and monthly, via
cron(8). Refer to periodic(8) for details.

ppp(8) configuration files.

Empty directory commonly used by system
administrators as a temporary mount point.

Process file system. Refer to procfs(5),
mount_procfs(8) for details.

Statically linked programs for emergency
recovery as described in rescue(8).

Home directory for the root account.

System programs and administration utilities
fundamental to both single-user and multi-user
environments.

Temporary files which are usually not preserved
across a system reboot. A memory-based file
system is often mounted at /tmp. This can be
automated using the tmpmfs-related variables of
rc.conf(5) or with an entry in /etc/fstab; refer to
mdmfs(8) for details.

The majority of user utilities and applications.

97

https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=hier&sektion=7&format=html
https://www.freebsd.org/cgi/man.cgi?query=loader.conf&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=intro&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=sendmail&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=cron&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=periodic&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ppp&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=procfs&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=mount_procfs&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rescue&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc.conf&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=mdmfs&sektion=8&format=html

Directory

Jusr/bin/

Jusr/include/

Jusr/lib/
Jusr/libdata/

Jusr/libexec/

Jusr/local/

/usr/obj/

/usr/ports/

Jusr/sbin/

Jusr/share/
Jusr/src/

/var/

/var/log/
/var/mail/

/var/spool/

/var/tmp/

/var/yp/

98

Description

Common utilities, programming tools, and
applications.

Standard C include files.
Archive libraries.
Miscellaneous utility data files.

System daemons and system utilities executed
by other programs.

Local executables and libraries. Also used as the
default destination for the FreeBSD ports
framework. Within /usr/local, the general layout
sketched out by hier(7) for /usr should be used.
Exceptions are the man directory, which is
directly under /usr/local rather than under
/usr/local/share, and the ports documentation is
in share/doc/port.

Architecture-specific target tree produced by
building the /usr/src tree.

The FreeBSD Ports Collection (optional).

System daemons and system utilities executed
by users.

Architecture-independent files.
BSD and/or local source files.

Multi-purpose log, temporary, transient, and
spool files. A memory-based file system is
sometimes mounted at /var. This can be
automated using the varmfs-related variables in
rc.conf(5) or with an entry in /etc/fstab; refer to
mdmfs(8) for details.

Miscellaneous system log files.
User mailbox files.

Miscellaneous printer and mail system spooling
directories.

Temporary files which are usually preserved
across a system reboot, unless /var is a memory-
based file system.

NIS maps.

https://www.freebsd.org/cgi/man.cgi?query=hier&sektion=7&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc.conf&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=mdmfs&sektion=8&format=html

3.6. Disk Organization

The smallest unit of organization that FreeBSD uses to find files is the filename. Filenames are case-
sensitive, which means that readme.txt and README.TXT are two separate files. FreeBSD does not
use the extension of a file to determine whether the file is a program, document, or some other
form of data.

Files are stored in directories. A directory may contain no files, or it may contain many hundreds of
files. A directory can also contain other directories, allowing a hierarchy of directories within one
another in order to organize data.

Files and directories are referenced by giving the file or directory name, followed by a forward
slash, /, followed by any other directory names that are necessary. For example, if the directory foo
contains a directory bar which contains the file readme.txt, the full name, or path, to the file is
foo/bar/readme.txt. Note that this is different from Windows® which uses \ to separate file and
directory names. FreeBSD does not use drive letters, or other drive names in the path. For example,
one would not type c:\foo\bar\readme.txt on FreeBSD.

Directories and files are stored in a file system. Each file system contains exactly one directory at
the very top level, called the root directory for that file system. This root directory can contain other
directories. One file system is designated the root file system or /. Every other file system is mounted
under the root file system. No matter how many disks are on the FreeBSD system, every directory
appears to be part of the same disk.

Consider three file systems, called A, B, and C. Each file system has one root directory, which
contains two other directories, called A1, A2 (and likewise B1, B2 and (1, C2).

Call A the root file system. If Is(1) is used to view the contents of this directory, it will show two
subdirectories, A1 and A2. The directory tree looks like this:

A file system must be mounted on to a directory in another file system. When mounting file system
B on to the directory A1, the root directory of B replaces A1, and the directories in B appear
accordingly:

99

https://www.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html

Any files that are in the B1 or B2 directories can be reached with the path /A1/B1 or /A1/B2 as
necessary. Any files that were in /A1 have been temporarily hidden. They will reappear if B is
unmounted from A.

If B had been mounted on A2 then the diagram would look like this:

and the paths would be /A2/B1 and /A2/B2 respectively.

File systems can be mounted on top of one another. Continuing the last example, the C file system
could be mounted on top of the B1 directory in the B file system, leading to this arrangement:

Or C could be mounted directly on to the A file system, under the A1 directory:

It is entirely possible to have one large root file system, and not need to create any others. There are
some drawbacks to this approach, and one advantage.

Benefits of Multiple File Systems

* Different file systems can have different mount options. For example, the root file system can be
mounted read-only, making it impossible for users to inadvertently delete or edit a critical file.
Separating user-writable file systems, such as /home, from other file systems allows them to be
mounted nosuid. This option prevents the suid/guid bits on executables stored on the file system
from taking effect, possibly improving security.

* FreeBSD automatically optimizes the layout of files on a file system, depending on how the file
system is being used. So a file system that contains many small files that are written frequently

101

will have a different optimization to one that contains fewer, larger files. By having one big file
system this optimization breaks down.

» FreeBSD’s file systems are robust if power is lost. However, a power loss at a critical point could
still damage the structure of the file system. By splitting data over multiple file systems it is
more likely that the system will still come up, making it easier to restore from backup as
necessary.

Benefit of a Single File System

* File systems are a fixed size. If you create a file system when you install FreeBSD and give it a
specific size, you may later discover that you need to make the partition bigger. This is not easily
accomplished without backing up, recreating the file system with the new size, and then
restoring the backed up data.

o FreeBSD features the growfs(8) command, which makes it possible to increase
the size of file system on the fly, removing this limitation.

File systems are contained in partitions. This does not have the same meaning as the common
usage of the term partition (for example, MS-DOS® partition), because of FreeBSD’s UNIX®
heritage. Each partition is identified by a letter from a through to h. Each partition can contain only
one file system, which means that file systems are often described by either their typical mount
point in the file system hierarchy, or the letter of the partition they are contained in.

FreeBSD also uses disk space for swap space to provide virtual memory. This allows your computer
to behave as though it has much more memory than it actually does. When FreeBSD runs out of
memory, it moves some of the data that is not currently being used to the swap space, and moves it
back in (moving something else out) when it needs it.

Some partitions have certain conventions associated with them.

Partition Convention

a Normally contains the root file system.

b Normally contains swap space.

c Normally the same size as the enclosing slice.

This allows utilities that need to work on the
entire slice, such as a bad block scanner, to work
on the c partition. A file system would not
normally be created on this partition.

d Partition d used to have a special meaning
associated with it, although that is now gone and
d may work as any normal partition.

Disks in FreeBSD are divided into slices, referred to in Windows® as partitions, which are
numbered from 1 to 4. These are then divided into partitions, which contain file systems, and are
labeled using letters.

Slice numbers follow the device name, prefixed with an s, starting at 1. So "da0s1" is the first slice

102

https://www.freebsd.org/cgi/man.cgi?query=growfs&sektion=8&format=html

on the first SCSI drive. There can only be four physical slices on a disk, but there can be logical
slices inside physical slices of the appropriate type. These extended slices are numbered starting at
5, so "ada0s5" is the first extended slice on the first SATA disk. These devices are used by file
systems that expect to occupy a slice.

Slices, "dangerously dedicated" physical drives, and other drives contain partitions, which are
represented as letters from a to h. This letter is appended to the device name, so "da0Oa" is the a
partition on the first da drive, which is "dangerously dedicated". "adals3e" is the fifth partition in
the third slice of the second SATA disk drive.

Finally, each disk on the system is identified. A disk name starts with a code that indicates the type
of disk, and then a number, indicating which disk it is. Unlike slices, disk numbering starts at 0.
Common codes are listed in Disk Device Names.

When referring to a partition, include the disk name, s, the slice number, and then the partition
letter. Examples are shown in Sample Disk, Slice, and Partition Names.

Conceptual Model of a Disk shows a conceptual model of a disk layout.

When installing FreeBSD, configure the disk slices, create partitions within the slice to be used for
FreeBSD, create a file system or swap space in each partition, and decide where each file system
will be mounted.

Table 4. Disk Device Names

Drive Type Drive Device Name

SATA and IDE hard drives ada

SCSI hard drives and USB storage devices da

NVMe storage nvd or nda

SATA and IDE CD-ROM drives cd

SCSICD-ROM drives cd

Floppy drives fd

SCSI tape drives sa

RAID drives Examples include aacd for Adaptec®

AdvancedRAID, mlxd and mlyd for Mylex®, amrd
for AMI MegaRAID®, idad for Compaq Smart
RAID, twed for 3ware® RAID.

Table 5. Sample Disk, Slice, and Partition Names
Name Meaning

adalsla The first partition (a) on the first slice (s1) on
the first SATA disk (ada0).

dals2e The fifth partition (e) on the second slice (s2)
on the second SCSI disk (da1).

103

Example 13. Conceptual Model of a Disk

This diagram shows FreeBSD’s view of the first SATA disk attached to the system. Assume that
the disk is 250 GB in size, and contains an 80 GB slice and a 170 GB slice (MS-DOS® partitions).
The first slice contains a Windows® NTFS file system, C:, and the second slice contains a
FreeBSD installation. This example FreeBSD installation has four data partitions and a swap
partition.

The four partitions each hold a file system. Partition a is used for the root file system, d for
/var/, e for /tmp/, and f for /usr/. Partition letter c refers to the entire slice, and so is not used
for ordinary partitions.

250 GB Hard Disk: ada0
Slice 1, Windows NTFS, 80GB: ada0Os1

Slice 2, FreeBSD, 170GB: ada0s2

FreeBSD partition a, ada0Os2a
mounted as /

FreeBSD partition b, ada0Os2b
swap

FreeBSD partition d, ada0s2d
mounted as /var

FreeBSD partition e, ada0Os2e
mounted as /tmp

FreeBSD partition £, ada0Os2f
mounted as /usr

3.7. Mounting and Unmounting File Systems

The file system is best visualized as a tree, rooted, as it were, at /. /dev, /usr, and the other
directories in the root directory are branches, which may have their own branches, such as
Jusr/local, and so on.

There are various reasons to house some of these directories on separate file systems. /var contains
the directories log/, spool/, and various types of temporary files, and as such, may get filled up.

104

Filling up the root file system is not a good idea, so splitting /var from / is often favorable.

Another common reason to contain certain directory trees on other file systems is if they are to be
housed on separate physical disks, or are separate virtual disks, such as Network File System
mounts, described in “Network File System (NFS)”, or CDROM drives.

3.7.1. The fstab File

During the boot process (The FreeBSD Booting Process), file systems listed in /etc/fstab are
automatically mounted except for the entries containing noauto. This file contains entries in the
following format:

device /mount-point fstype options dumpfreq passno

device

An existing device name as explained in Disk Device Names.

mount-point

An existing directory on which to mount the file system.

fstype
The file system type to pass to mount(8). The default FreeBSD file system is ufs.

options
Either rw for read-write file systems, or ro for read-only file systems, followed by any other

options that may be needed. A common option is noauto for file systems not normally mounted
during the boot sequence. Other options are listed in mount(8).

dumpfreq

Used by dump(8) to determine which file systems require dumping. If the field is missing, a
value of zero is assumed.

passno

Determines the order in which file systems should be checked. File systems that should be
skipped should have their passno set to zero. The root file system needs to be checked before
everything else and should have its passno set to one. The other file systems should be set to
values greater than one. If more than one file system has the same passno, fsck(8) will attempt to
check file systems in parallel if possible.

Refer to fstab(5) for more information on the format of /etc/fstab and its options.

3.7.2. Using mount(8)

File systems are mounted using mount(8). The most basic syntax is as follows:

105

../network-servers/index.html#network-nfs
../boot/index.html#boot
https://www.freebsd.org/cgi/man.cgi?query=mount&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=mount&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=fsck&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=fstab&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=mount&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=mount&sektion=8&format=html

mount device mountpoint

This command provides many options which are described in mount(8), The most commonly used
options include:

Mount Options

-a
Mount all the file systems listed in /etc/fstab, except those marked as "noauto", excluded by the
-t flag, or those that are already mounted.

-d
Do everything except for the actual mount system call. This option is useful in conjunction with
the -v flag to determine what mount(8) is actually trying to do.

-f
Force the mount of an unclean file system (dangerous), or the revocation of write access when
downgrading a file system’s mount status from read-write to read-only.

-r

Mount the file system read-only. This is identical to using -o ro.

-t fstype

Mount the specified file system type or mount only file systems of the given type, if -a is
included. "ufs" is the default file system type.

-u

Update mount options on the file system.

Be verbose.

-W

Mount the file system read-write.
The following options can be passed to -0 as a comma-separated list:

nosuid

Do not interpret setuid or setgid flags on the file system. This is also a useful security option.

3.7.3. Using umount(8)

To unmount a file system use umount(8). This command takes one parameter which can be a
mountpoint, device name, -3 or -A.

All forms take -f to force unmounting, and -v for verbosity. Be warned that -f is not generally a
good idea as it might crash the computer or damage data on the file system.

106

https://www.freebsd.org/cgi/man.cgi?query=mount&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=mount&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=umount&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=umount&sektion=8&format=html

To unmount all mounted file systems, or just the file system types listed after -t, use -a or -A. Note
that -A does not attempt to unmount the root file system.

3.8. Processes and Daemons

FreeBSD is a multi-tasking operating system. Each program running at any one time is called a
process. Every running command starts at least one new process and there are a number of system
processes that are run by FreeBSD.

Each process is uniquely identified by a number called a process ID (PID). Similar to files, each
process has one owner and group, and the owner and group permissions are used to determine
which files and devices the process can open. Most processes also have a parent process that
started them. For example, the shell is a process, and any command started in the shell is a process
which has the shell as its parent process. The exception is a special process called init(8) which is
always the first process to start at boot time and which always has a PID of 1.

Some programs are not designed to be run with continuous user input and disconnect from the
terminal at the first opportunity. For example, a web server responds to web requests, rather than
user input. Mail servers are another example of this type of application. These types of programs
are known as daemons. The term daemon comes from Greek mythology and represents an entity
that is neither good nor evil, and which invisibly performs useful tasks. This is why the BSD mascot
is the cheerful-looking daemon with sneakers and a pitchfork.

There is a convention to name programs that normally run as daemons with a trailing "d". For
example, BIND is the Berkeley Internet Name Domain, but the actual program that executes is
named. The Apache web server program is httpd and the line printer spooling daemon is 1pd. This is
only a naming convention. For example, the main mail daemon for the Sendmail application is
sendmail, and not maild.

3.8.1. Viewing Processes

To see the processes running on the system, use ps(1) or top(1). To display a static list of the
currently running processes, their PIDs, how much memory they are using, and the command they
were started with, use ps(1). To display all the running processes and update the display every few
seconds in order to interactively see what the computer is doing, use top(1).

By default, ps(1) only shows the commands that are running and owned by the user. For example:

% ps

PID TT STAT TIME COMMAND
8203 © Ss 0:00.59 /bin/csh
8895 0 R+ 0:00.00 ps

The output from ps(1) is organized into a number of columns. The PID column displays the process
ID. PIDs are assigned starting at 1, go up to 99999, then wrap around back to the beginning.
However, a PID is not reassigned if it is already in use. The TT column shows the tty the program is
running on and STAT shows the program’s state. TIME is the amount of time the program has been
running on the CPU. This is usually not the elapsed time since the program was started, as most

107

https://www.freebsd.org/cgi/man.cgi?query=init&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=top&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=top&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html

programs spend a lot of time waiting for things to happen before they need to spend time on the
CPU. Finally, COMMAND is the command that was used to start the program.

A number of different options are available to change the information that is displayed. One of the
most useful sets is auxww, where a displays information about all the running processes of all users, u
displays the username and memory usage of the process' owner, x displays information about
daemon processes, and ww causes ps(1) to display the full command line for each process, rather
than truncating it once it gets too long to fit on the screen.

The output from top(1) is similar:

% top

last pid: 9609; Tload averages: 0.56, 0.45, 0.36 up 0+00:20:03
10:21:46

107 processes: 2 running, 104 sleeping, 1 zombie

CPU: 6.2% user, 0.1% nice, 8.2% system, 0.4% interrupt, 85.1% idle

Mem: 541M Active, 450M Inact, 1333M Wired, 4064K Cache, 1498M Free

ARC: 992M Total, 377M MFU, 589M MRU, 250K Anon, 5280K Header, 21M Other

Swap: 2048M Total, 2048M Free

PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
557 root 1-21 r31 136M 42296K select @ 2:20 9.96% Xorg
8198 dru 2 52 0 449M 82736K select 3 0:08 5.96% kdeinit4
8311 dru 27 30 @ 1150M 187M uwait 1 1:37 0.98% firefox
431 root 1 20 0 14268K 1728K select © 0:06 0.98% moused
9551 dru (VA 0 16600K 2660K CPU3 3 0:01 0.98% top
2357 dru 4 37 @ 718M 141M select @ 0:21 0.00% kdeinit4
8705 dru 4 35 0 4830M 98M select 2 0:20 0.00% kdeinit4
8076 dru 6 20 @ 552M 113M uwait @ 0:12 0.00% soffice.bin
2623 root 1 30 10 12088K 1636K select 3 0:09 0.00% powerd
2338 dru 1 20 0 440M 84532K select 1 0:06 0.00% kwin
1427 dru 5 22 0 605M 86412K select 1 0:05 0.00% kdeinit4

The output is split into two sections. The header (the first five or six lines) shows the PID of the last
process to run, the system load averages (which are a measure of how busy the system is), the
system uptime (time since the last reboot) and the current time. The other figures in the header
relate to how many processes are running, how much memory and swap space has been used, and
how much time the system is spending in different CPU states. If the ZFS file system module has
been loaded, an ARC line indicates how much data was read from the memory cache instead of from
disk.

Below the header is a series of columns containing similar information to the output from ps(1),
such as the PID, username, amount of CPU time, and the command that started the process. By
default, top(1) also displays the amount of memory space taken by the process. This is split into two
columns: one for total size and one for resident size. Total size is how much memory the
application has needed and the resident size is how much it is actually using now.

top(1) automatically updates the display every two seconds. A different interval can be specified
with -s.

108

https://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=top&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=top&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=top&sektion=1&format=html

3.8.2. Killing Processes

One way to communicate with any running process or daemon is to send a signal using kill(1).
There are a number of different signals; some have a specific meaning while others are described
in the application’s documentation. A user can only send a signal to a process they own and sending
a signal to someone else’s process will result in a permission denied error. The exception is the root
user, who can send signals to anyone’s processes.

The operating system can also send a signal to a process. If an application is badly written and tries
to access memory that it is not supposed to, FreeBSD will send the process the "Segmentation
Violation" signal (SIGSEGV). If an application has been written to use the alarm(3) system call to be
alerted after a period of time has elapsed, it will be sent the "Alarm" signal (SIGALRM).

Two signals can be used to stop a process: SIGTERM and SIGKILL. SIGTERM is the polite way to Kkill a
process as the process can read the signal, close any log files it may have open, and attempt to finish
what it is doing before shutting down. In some cases, a process may ignore SIGTERM if it is in the
middle of some task that cannot be interrupted.

SIGKILL cannot be ignored by a process. Sending a SIGKILL to a process will usually stop that process
11

there and then. .
Other commonly used signals are SIGHUP, SIGUSR1, and SIGUSR2. Since these are general purpose
signals, different applications will respond differently.

For example, after changing a web server’s configuration file, the web server needs to be told to re-
read its configuration. Restarting httpd would result in a brief outage period on the web server.
Instead, send the daemon the SIGHUP signal. Be aware that different daemons will have different
behavior, so refer to the documentation for the daemon to determine if SIGHUP will achieve the
desired results.

109

https://www.freebsd.org/cgi/man.cgi?query=kill&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=alarm&sektion=3&format=html

Procedure: Sending a Signal to a Process

This example shows how to send a signal to inetd(8). The inetd(8) configuration file is
/etc/inetd.conf, and inetd(8) will re-read this configuration file when it is sent a SIGHUP.

1. Find the PID of the process to send the signal to using pgrep(1). In this example, the PID
for inetd(8) is 198:

% pgrep -1 inetd
198 inetd

2. Use kill(1) to send the signal. As inetd(8) is owned by root, use su(1) to become root first.

% su
Password:
/bin/kill -s HUP 198

Like most UNIX® commands, kill(1) will not print any output if it is successful. If a signal is
sent to a process not owned by that user, the message kill: PID: Operation not permitted
will be displayed. Mistyping the PID will either send the signal to the wrong process, which
could have negative results, or will send the signal to a PID that is not currently in use,
resulting in the error kill: PID: No such process.

Why Use /bin/kill?:

Many shells provide kill as a built in command, meaning that the shell will
0 send the signal directly, rather than running /bin/kill. Be aware that different

shells have a different syntax for specifying the name of the signal to send.

Rather than try to learn all of them, it can be simpler to specify /bin/kill.

When sending other signals, substitute TERM or KILL with the name of the signal.

Killing a random process on the system is a bad idea. In particular, init(8), PID 1, is

o special. Running /bin/kill -s KILL 1 is a quick, and unrecommended, way to
shutdown the system. Always double check the arguments to kill(1) before pressing
Return.

3.9. Shells

A shell provides a command line interface for interacting with the operating system. A shell
receives commands from the input channel and executes them. Many shells provide built in
functions to help with everyday tasks such as file management, file globbing, command line editing,
command macros, and environment variables. FreeBSD comes with several shells, including the
Bourne shell (sh(1)) and the extended C shell (tcsh(1)). Other shells are available from the FreeBSD
Ports Collection, such as zsh and bash.

110

https://www.freebsd.org/cgi/man.cgi?query=inetd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=inetd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=inetd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pgrep&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=inetd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=kill&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=inetd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=su&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=kill&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=init&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=kill&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=tcsh&sektion=1&format=html

The shell that is used is really a matter of taste. A C programmer might feel more comfortable with
a C-like shell such as tcsh(1). A Linux® user might prefer bash. Each shell has unique properties that
may or may not work with a user’s preferred working environment, which is why there is a choice
of which shell to use.

One common shell feature is filename completion. After a user types the first few letters of a
command or filename and presses Tab, the shell completes the rest of the command or filename.
Consider two files called foobar and football. To delete foobar, the user might type rm foo and press
Tab to complete the filename.

But the shell only shows rm foo. It was unable to complete the filename because both foobar and
football start with foo. Some shells sound a beep or show all the choices if more than one name
matches. The user must then type more characters to identify the desired filename. Typing a t and
pressing Tab again is enough to let the shell determine which filename is desired and fill in the rest.

Another feature of the shell is the use of environment variables. Environment variables are a
variable/key pair stored in the shell’s environment. This environment can be read by any program
invoked by the shell, and thus contains a lot of program configuration. Common Environment
Variables provides a list of common environment variables and their meanings. Note that the
names of environment variables are always in uppercase.

Table 6. Common Environment Variables

Variable Description

USER Current logged in user’s name.

PATH Colon-separated list of directories to search for
binaries.

DISPLAY Network name of the Xorg display to connect to,
if available.

SHELL The current shell.

TERM The name of the user’s type of terminal. Used to

determine the capabilities of the terminal.

TERMCAP Database entry of the terminal escape codes to
perform various terminal functions.

OSTYPE Type of operating system.

MACHTYPE The system’s CPU architecture.

EDITOR The user’s preferred text editor.

PAGER The user’s preferred utility for viewing text one
page at a time.

MANPATH Colon-separated list of directories to search for
manual pages.

How to set an environment variable differs between shells. In tcsh(1) and csh(1), use setenv to set
environment variables. In sh(1) and bash, use export to set the current environment variables. This
example sets the default EDITOR to /usr/local/bin/emacs for the tcsh(1) shell:

111

https://www.freebsd.org/cgi/man.cgi?query=tcsh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=tcsh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=csh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=tcsh&sektion=1&format=html

% setenv EDITOR /usr/local/bin/emacs
The equivalent command for bash would be:
% export EDITOR="/usr/local/bin/emacs"

To expand an environment variable in order to see its current setting, type a § character in front of
its name on the command line. For example, echo $TERM displays the current $TERM setting.

Shells treat special characters, known as meta-characters, as special representations of data. The
most common meta-character is *, which represents any number of characters in a filename. Meta-
characters can be used to perform filename globbing. For example, echo * is equivalent to 1s
because the shell takes all the files that match * and echo lists them on the command line.

To prevent the shell from interpreting a special character, escape it from the shell by starting it
with a backslash (\). For example, echo $TERM prints the terminal setting whereas echo \$TERM
literally prints the string $TERM.

3.9.1. Changing the Shell

The easiest way to permanently change the default shell is to use chsh. Running this command will
open the editor that is configured in the EDITOR environment variable, which by default is set to
vi(1). Change the Shell: line to the full path of the new shell.

Alternately, use chsh -s which will set the specified shell without opening an editor. For example, to
change the shell to bash:

%

% chsh -s /usr/local/bin/bash

The new shell must be present in /etc/shells. If the shell was installed from the
FreeBSD Ports Collection as described in Installing Applications: Packages and
Ports, it should be automatically added to this file. If it is missing, add it using this
command, replacing the path with the path of the shell:

echo /usr/local/bin/bash >> /etc/shells
Then, rerun chsh(1).

3.9.2. Advanced Shell Techniques

The UNIX® shell is not just a command interpreter, it acts as a powerful tool which allows users to
execute commands, redirect their output, redirect their input and chain commands together to
improve the final command output. When this functionality is mixed with built in commands, the
user is provided with an environment that can maximize efficiency.

112

https://www.freebsd.org/cgi/man.cgi?query=vi&sektion=1&format=html
../ports/index.html#ports
../ports/index.html#ports
https://www.freebsd.org/cgi/man.cgi?query=chsh&sektion=1&format=html

Shell redirection is the action of sending the output or the input of a command into another
command or into a file. To capture the output of the Is(1) command, for example, into a file, redirect
the output:

% 1s > directory_listing.txt

The directory contents will now be listed in directory_listing.txt. Some commands can be used to
read input, such as sort(1). To sort this listing, redirect the input:

% sort < directory_listing.txt

The input will be sorted and placed on the screen. To redirect that input into another file, one could
redirect the output of sort(1) by mixing the direction:

0,

% sort < directory_listing.txt > sorted.txt

In all of the previous examples, the commands are performing redirection using file descriptors.
Every UNIX® system has file descriptors, which include standard input (stdin), standard output
(stdout), and standard error (stderr). Each one has a purpose, where input could be a keyboard or a
mouse, something that provides input. Output could be a screen or paper in a printer. And error
would be anything that is used for diagnostic or error messages. All three are considered I/O based
file descriptors and sometimes considered streams.

Through the use of these descriptors, the shell allows output and input to be passed around through
various commands and redirected to or from a file. Another method of redirection is the pipe
operator.

The UNIX® pipe operator, "|" allows the output of one command to be directly passed or directed to
another program. Basically, a pipe allows the standard output of a command to be passed as
standard input to another command, for example:

% cat directory_listing.txt | sort | less

In that example, the contents of directory_listing.txt will be sorted and the output passed to less(1).
This allows the user to scroll through the output at their own pace and prevent it from scrolling off
the screen.

3.10. Text Editors

Most FreeBSD configuration is done by editing text files, so it is a good idea to become familiar with
a text editor. FreeBSD comes with a few as part of the base system, and many more are available in
the Ports Collection.

A simple editor to learn is ee(1), which stands for easy editor. To start this editor, type ee filename
where filename is the name of the file to be edited. Once inside the editor, all of the commands for

113

https://www.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sort&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=sort&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=less&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ee&sektion=1&format=html

manipulating the editor’s functions are listed at the top of the display. The caret () represents Ctrl,
so e expands to Ctrl + e. To leave ee(1), press Esc, then choose the "leave editor" option from the
main menu. The editor will prompt to save any changes if the file has been modified.

FreeBSD also comes with more powerful text editors, such as vi(1), as part of the base system. Other
editors, like editors/emacs and editors/vim, are part of the FreeBSD Ports Collection. These editors
offer more functionality at the expense of being more complicated to learn. Learning a more
powerful editor such as vim or Emacs can save more time in the long run.

Many applications which modify files or require typed input will automatically open a text editor.
To change the default editor, set the EDITOR environment variable as described in Shells.

3.11. Devices and Device Nodes

A device is a term used mostly for hardware-related activities in a system, including disks, printers,
graphics cards, and keyboards. When FreeBSD boots, the majority of the boot messages refer to
devices being detected. A copy of the boot messages are saved to /var/run/dmesg.boot.

Each device has a device name and number. For example, ada0 is the first SATA hard drive, while
kbdoO represents the keyboard.

Most devices in FreeBSD must be accessed through special files called device nodes, which are
located in /dev.

3.12. Manual Pages

The most comprehensive documentation on FreeBSD is in the form of manual pages. Nearly every
program on the system comes with a short reference manual explaining the basic operation and
available arguments. These manuals can be viewed using man:

% man command

where command is the name of the command to learn about. For example, to learn more about
Is(1), type:

% man 1s

Manual pages are divided into sections which represent the type of topic. In FreeBSD, the following
sections are available:
1. User commands.
System calls and error numbers.
Functions in the C libraries.

Device drivers.

1k WD

File formats.

114

https://www.freebsd.org/cgi/man.cgi?query=ee&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=vi&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/editors/emacs/pkg-descr
https://cgit.freebsd.org/ports/tree/editors/vim/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html

6. Games and other diversions.
7. Miscellaneous information.
8. System maintenance and operation commands.
9. System kernel interfaces.
In some cases, the same topic may appear in more than one section of the online manual. For

example, there is a chmod user command and a chmod() system call. To tell man(1) which section to
display, specify the section number:

% man 1 chmod

This will display the manual page for the user command chmod(1). References to a particular
section of the online manual are traditionally placed in parenthesis in written documentation, so
chmod(1) refers to the user command and chmod(2) refers to the system call.

If the name of the manual page is unknown, use man -k to search for keywords in the manual page
descriptions:

% man -k mail
This command displays a list of commands that have the keyword "mail" in their descriptions. This
is equivalent to using apropos(1).

To read the descriptions for all of the commands in /usr/sbin, type:

o

cd /usr/sbin
man -f * | more

o°

or

o°

cd /usr/sbin
whatis * |more

o

3.12.1. GNU Info Files

FreeBSD includes several applications and utilities produced by the Free Software Foundation
(FSF). In addition to manual pages, these programs may include hypertext documents called info
files. These can be viewed using info(1) or, if editors/emacs is installed, the info mode of emacs.

To use info(1), type:

% info

115

https://www.freebsd.org/cgi/man.cgi?query=man&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi?query=apropos&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=info&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/editors/emacs/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=info&sektion=1&format=html

For a brief introduction, type h. For a quick command reference, type ?.

[1] There are a few tasks that cannot be interrupted. For example, if the process is trying to read from a file that is on another
computer on the network, and the other computer is unavailable, the process is said to be uninterruptible. Eventually the process
will time out, typically after two minutes. As soon as this time out occurs the process will be killed.

116

Chapter 4. Installing Applications: Packages
and Ports

4.1. Synopsis

FreeBSD is bundled with a rich collection of system tools as part of the base system. In addition,
FreeBSD provides two complementary technologies for installing third-party software: the FreeBSD
Ports Collection, for installing from source, and packages, for installing from pre-built binaries.
Either method may be used to install software from local media or from the network.

After reading this chapter, you will know:

» The difference between binary packages and ports.

* How to find third-party software that has been ported to FreeBSD.

* How to manage binary packages using pkg.

* How to build third-party software from source using the Ports Collection.

* How to find the files installed with the application for post-installation configuration.

 What to do if a software installation fails.

4.2. Overview of Software Installation

The typical steps for installing third-party software on a UNIX® system include:
1. Find and download the software, which might be distributed in source code format or as a
binary.

2. Unpack the software from its distribution format. This is typically a tarball compressed with a
program such as compress(1), gzip(1), bzip2(1) or xz(1).

3. Locate the documentation in INSTALL, README or some file in a doc/ subdirectory and read up
on how to install the software.

4. If the software was distributed in source format, compile it. This may involve editing a Makefile
or running a configure script.

5. Test and install the software.

A FreeBSD port is a collection of files designed to automate the process of compiling an application
from source code. The files that comprise a port contain all the necessary information to
automatically download, extract, patch, compile, and install the application.

If the software has not already been adapted and tested on FreeBSD, the source code might need
editing in order for it to install and run properly.

However, over 36000 third-party applications have already been ported to FreeBSD. When feasible,
these applications are made available for download as pre-compiled packages.

117

https://www.freebsd.org/cgi/man.cgi?query=compress&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=gzip&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=bzip2&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=xz&sektion=1&format=html
https://www.FreeBSD.org/ports/

Packages can be manipulated with the FreeBSD package management commands.

Both packages and ports understand dependencies. If a package or port is used to install an
application and a dependent library is not already installed, the library will automatically be
installed first.

A FreeBSD package contains pre-compiled copies of all the commands for an application, as well as
any configuration files and documentation. A package can be manipulated with the pkg(8)
commands, such as pkg install.

While the two technologies are similar, packages and ports each have their own strengths. Select
the technology that meets your requirements for installing a particular application.

Package Benefits
* A compressed package tarball is typically smaller than the compressed tarball containing the
source code for the application.

* Packages do not require compilation time. For large applications, such as Mozilla, KDE, or
GNOME, this can be important on a slow system.

* Packages do not require any understanding of the process involved in compiling software on
FreeBSD.

Port Benefits

* Packages are normally compiled with conservative options because they have to run on the
maximum number of systems. By compiling from the port, one can change the compilation
options.

* Some applications have compile-time options relating to which features are installed. For

example, Apache can be configured with a wide variety of different built-in options.

In some cases, multiple packages will exist for the same application to specify certain settings.
For example, Ghostscript is available as a ghostscript package and a ghostscript-nox11 package,
depending on whether or not Xorg is installed. Creating multiple packages rapidly becomes
impossible if an application has more than one or two different compile-time options.

* The licensing conditions of some software forbid binary distribution. Such software must be
distributed as source code which must be compiled by the end-user.

* Some people do not trust binary distributions or prefer to read through source code in order to
look for potential problems.

* Source code is needed in order to apply custom patches.

To keep track of updated ports, subscribe to the FreeBSD ports mailing list and the FreeBSD ports
bugs mailing list.

Before installing any application, check https://vuxml.freebsd.org/ for security
issues related to the application or type pkg audit -F to check all installed

applications for known vulnerabilities.

The remainder of this chapter explains how to use packages and ports to install and manage third-

118

https://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html
https://lists.FreeBSD.org/subscription/freebsd-ports
https://lists.FreeBSD.org/subscription/freebsd-ports-bugs
https://lists.FreeBSD.org/subscription/freebsd-ports-bugs
https://vuxml.freebsd.org/

party software on FreeBSD.

4.3. Finding Software

FreeBSD’s list of available applications is growing all the time. There are a number of ways to find
software to install:

» The FreeBSD web site maintains an up-to-date searchable list of all the available applications, at
https://www.FreeBSD.org/ports/. The ports can be searched by application name or by software
category.

* Dan Langille maintains FreshPorts.org which provides a comprehensive search utility and also
tracks changes to the applications in the Ports Collection. Registered users can create a
customized watch list in order to receive an automated email when their watched ports are
updated.

« If finding a particular application becomes challenging, try searching a site like SourceForge.net
or GitHub.com then check back at the FreeBSD site to see if the application has been ported.

» To search the binary package repository for an application:

pkg search subversion
git-subversion-1.9.2

java-subversion-1.8.8_2
p5-subversion-1.8.8_2
py27-hgsubversion-1.6
py27-subversion-1.8.8_2
ruby-subversion-1.8.8_2

subversion-1.8.8 2
subversion-book-4515
subversion-static-1.8.8_2
subversion16-1.6.23 4
subversion17-1.7.16_2

Package names include the version number and, in the case of ports based on python, the
version number of the version of python the package was built with. Some ports also have
multiple versions available. In the case of Subversion, there are different versions available, as
well as different compile options. In this case, the statically linked version of Subversion. When
indicating which package to install, it is best to specify the application by the port origin, which
is the path in the ports tree. Repeat the pkg search with -o to list the origin of each package:

119

https://www.FreeBSD.org/ports/
http://www.FreshPorts.org/
http://www.sourceforge.net/
http://www.github.com/
https://www.FreeBSD.org/ports/

120

pkg search -o subversion
devel/git-subversion
java/java-subversion
devel/p5-subversion
devel/py-hgsubversion
devel/py-subversion
devel/ruby-subversion
devel/subversion16
devel/subversion17
devel/subversion
devel/subversion-book
devel/subversion-static

Searching by shell globs, regular expressions, exact match, by description, or any other field in
the repository database is also supported by pkg search. After installing ports-mgmt/pkg or
ports-mgmt/pkg-devel, see pkg-search(8) for more details.

If the Ports Collection is already installed, there are several methods to query the local version
of the ports tree. To find out which category a port is in, type whereis file, where file is the
program to be installed:

whereis 1sof
lsof: /usr/ports/sysutils/lsof

Alternately, an echo(1) statement can be used:

echo /usr/ports/*/*1sof*
/usr/ports/sysutils/1sof

Note that this will also return any matched files downloaded into the /usr/ports/distfiles
directory.

Another way to find software is by using the Ports Collection’s built-in search mechanism. To
use the search feature, cd to /usr/ports then run make search name=program-name where program-
name is the name of the software. For example, to search for 1sof:

cd /usr/ports

make search name=1sof

Port: 1sof-4.88.d,8

Path: /usr/ports/sysutils/lsof

Info: Lists information about open files (similar to fstat(1))
Maint: Tler@lerctr.org

Index: sysutils

B-deps:

R-deps:

https://cgit.freebsd.org/ports/tree/ports-mgmt/pkg/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/pkg-devel/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=pkg-search&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=echo&sektion=1&format=html

The built-in search mechanism uses a file of index information. If a message
O indicates that the INDEX is required, run make fetchindex to download the
- current index file. With the INDEX present, make search will be able to perform
the requested search.

The "Path:" line indicates where to find the port.

To receive less information, use the quicksearch feature:

cd /usr/ports

make quicksearch name=1sof

Port: 1sof-4.88.d,8

Path: /usr/ports/sysutils/lsof

Info: Lists information about open files (similar to fstat(1))

For more in-depth searching, use make search key=string or make quicksearch key=string, where
string is some text to search for. The text can be in comments, descriptions, or dependencies in
order to find ports which relate to a particular subject when the name of the program is
unknown.

When using search or quicksearch, the search string is case-insensitive. Searching for "LSOF"
will yield the same results as searching for "lsof™.

4.4. Using pkg for Binary Package Management

pkg is the next generation replacement for the traditional FreeBSD package management tools,
offering many features that make dealing with binary packages faster and easier.

For sites wishing to only use prebuilt binary packages from the FreeBSD mirrors, managing
packages with pkg can be sufficient.

However, for those sites building from source or using their own repositories, a separate port
management tool will be needed.

Since pkg only works with binary packages, it is not a replacement for such tools. Those tools can
be used to install software from both binary packages and the Ports Collection, while pkg installs
only binary packages.

4.4.1. Getting Started with pkg

FreeBSD includes a bootstrap utility which can be used to download and install pkg and its manual
pages. This utility is designed to work with versions of FreeBSD starting with 10.X.

Not all FreeBSD versions and architectures support this bootstrap process. The

current list is at https://pkg.freebsd.org/. For other cases, pkg must instead be
installed from the Ports Collection or as a binary package.

121

https://pkg.freebsd.org/

To bootstrap the system, run:

/usr/sbin/pkg

You must have a working Internet connection for the bootstrap process to succeed.

Otherwise, to install the port, run:

cd /usr/ports/ports-mgmt/pkg
make
make install clean

When upgrading an existing system that originally used the older pkg_* tools, the database must be
converted to the new format, so that the new tools are aware of the already installed packages.
Once pkg has been installed, the package database must be converted from the traditional format to
the new format by running this command:

pkg2ng
o This step is not required for new installations that do not yet have any third-party
software installed.
o This step is not reversible. Once the package database has been converted to the
pkg format, the traditional pkg_* tools should no longer be used.

The package database conversion may emit errors as the contents are converted to

o the new version. Generally, these errors can be safely ignored. However, a list of
software that was not successfully converted is shown after pkg2ng finishes. These
applications must be manually reinstalled.

To ensure that the Ports Collection registers new software with pkg instead of the traditional
packages database, FreeBSD versions earlier than 10.X require this line in /etc/make.conf:

WITH_PKGNG= yes

By default, pkg uses the binary packages from the FreeBSD package mirrors (the repository). For
information about building a custom package repository, see Building Packages with Poudriere.

Additional pkg configuration options are described in pkg.conf(5).

Usage information for pkg is available in the pkg(8) manual page or by running pkg without
additional arguments.

Each pkg command argument is documented in a command-specific manual page. To read the

122

https://www.freebsd.org/cgi/man.cgi?query=pkg.conf&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html

manual page for pkg install, for example, run either of these commands:

pkg help install

man pkg-install

The rest of this section demonstrates common binary package management tasks which can be
performed using pkg. Each demonstrated command provides many switches to customize its use.
Refer to a command’s help or man page for details and more examples.

4.4.2. Quarterly and Latest Ports Branches

The Quarterly branch provides users with a more predictable and stable experience for port and
package installation and upgrades. This is done essentially by only allowing non-feature updates.
Quarterly branches aim to receive security fixes (that may be version updates, or backports of
commits), bug fixes and ports compliance or framework changes. The Quarterly branch is cut from
HEAD at the beginning of every (yearly) quarter in January, April, July, and October. Branches are
named according to the year (YYYY) and quarter (Q1-4) they are created in. For example, the
quarterly branch created in January 2016, is named 2016Q1. And the Latest branch provides the
latest versions of the packages to the users.

To switch from quarterly to latest run the following commands:

mkdir -p /usr/local/etc/pkg/repos
cp /etc/pkg/FreeBSD.conf /usr/local/etc/pkg/repos/FreeBSD.conf

Edit the file /usr/local/etc/pkg/repos/FreeBSD.conf and change the string quarterly to latest in the
url: line.

The result should be similar to the following:

FreeBSD: {
url: "pkg+http://pkg.FreeBSD.org/${ABI}/latest",
mirror_type: "srv",
signature_type: "fingerprints",
fingerprints: "/usr/share/keys/pkg",
enabled: yes

}

And finally run this command to update from the new (latest) repository metadata.

pkg update -f

123

4.4.3. Obtaining Information About Installed Packages

Information about the packages installed on a system can be viewed by running pkg info which,
when run without any switches, will list the package version for either all installed packages or the
specified package.

For example, to see which version of pkg is installed, run:

pkg info pkg
pkg-1.1.4_1

4.4.4. Installing and Removing Packages

To install a binary package use the following command, where packagename is the name of the
package to install:

pkg install packagename

This command uses repository data to determine which version of the software to install and if it
has any uninstalled dependencies. For example, to install curl:

pkg install curl
Updating repository catalogue
/usr/local/tmp/All/curl-7.31.0_1.txz 100% of 1181 kB 1380 kBps 00m01s

/usr/local/tmp/All/ca_root_nss-3.15.1_1.txz 100% of 288 kB 1700 kBps 00m00s

Updating repository catalogue
The following 2 packages will be installed:

Installing ca_root_nss: 3.15.1_1
Installing curl: 7.31.0_1

The installation will require 3 MB more space
@ B to be downloaded

Proceed with installing packages [y/N]: y
Checking integrity... done

[1/2] Installing ca_root_nss-3.15.1_1... done
[2/2] Installing curl-7.31.0_1... done
Cleaning up cache files...Done

The new package and any additional packages that were installed as dependencies can be seen in
the installed packages list:

124

pkg info

ca_root_nss-3.15.1_1 The root certificate bundle from the Mozilla Project
curl-7.31.0_1 Non-interactive tool to get files from FTP, GOPHER, HTTP(S) servers
pkg-1.1.4_6 New generation package manager

Packages that are no longer needed can be removed with pkg delete. For example:

pkg delete curl
The following packages will be deleted:

curl-7.31.01
The deletion will free 3 MB
Proceed with deleting packages [y/N]: vy

[1/1] Deleting curl-7.31.0_1... done

4.4.5. Upgrading Installed Packages

Installed packages can be upgraded to their latest versions by running:
pkg upgrade

This command will compare the installed versions with those available in the repository catalogue
and upgrade them from the repository.

4.4.6. Auditing Installed Packages

Software vulnerabilities are regularly discovered in third-party applications. To address this, pkg
includes a built-in auditing mechanism. To determine if there are any known vulnerabilities for the
software installed on the system, run:

pkg audit -F

4.4.7. Automatically Removing Unused Packages

Removing a package may leave behind dependencies which are no longer required. Unneeded
packages that were installed as dependencies (leaf packages) can be automatically detected and
removed using:

125

pkg autoremove
Packages to be autoremoved:
ca_root_nss-3.15.1_1

The autoremoval will free 723 kB

Proceed with autoremoval of packages [y/N]: vy
Deinstalling ca_root_nss-3.15.1_1... done

Packages installed as dependencies are called automatic packages. Non-automatic packages, i.e the
packages that were explicity installed not as a dependency to another package, can be listed using:

pkg prime-list
nginx

openvpn

sudo

pkg prime-list is an alias command declared in /usr/local/etc/pkg.conf. There are many others that
can be used to query the package database of the system. For instance, command pkg prime-origins
can be used to get the origin port directory of the list mentioned above:

pkg prime-origins
www/nginx
security/openvpn
security/sudo

This list can be used to rebuild all packages installed on a system using build tools such as ports-
mgmt/poudriere or ports-mgmt/synth.

Marking an installed package as automatic can be done using:
pkg set -A 1 devel/cmake

Once a package is a leaf package and is marked as automatic, it gets selected by pkg autoremove.

Marking an installed package as not automatic can be done using:

pkg set -A @ devel/cmake

4.4.8. Restoring the Package Database

Unlike the traditional package management system, pkg includes its own package database backup
mechanism. This functionality is enabled by default.

126

https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/synth/pkg-descr

G To disable the periodic script from backing up the package database, set
- daily_backup_pkgdb_enable="NO" in periodic.conf(5).

To restore the contents of a previous package database backup, run the following command
replacing /path/to/pkg.sql with the location of the backup:

pkg backup -r /path/to/pkg.sql

o If restoring a backup taken by the periodic script, it must be decompressed prior to
being restored.

To run a manual backup of the pkg database, run the following command, replacing /path/to/pkg.sql
with a suitable file name and location:

pkg backup -d /path/to/pkg.sql

4.4.9. Removing Stale Packages

By default, pkg stores binary packages in a cache directory defined by PKG_CACHEDIR in pkg.conf(5).
Only copies of the latest installed packages are kept. Older versions of pkg kept all previous
packages. To remove these outdated binary packages, run:

pkg clean
The entire cache may be cleared by running:

pkg clean -a

4.4.10. Modifying Package Metadata

Software within the FreeBSD Ports Collection can undergo major version number changes. To
address this, pkg has a built-in command to update package origins. This can be useful, for
example, if lang/php5 is renamed to lang/php53 so that lang/php5 can now represent version 5.4.

To change the package origin for the above example, run:
pkg set -o lang/php5:1lang/php53
As another example, to update lang/ruby18 to lang/ruby19, run:

pkg set -o lang/ruby18:1ang/ruby19

127

https://www.freebsd.org/cgi/man.cgi?query=periodic.conf&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=pkg.conf&sektion=5&format=html
https://cgit.freebsd.org/ports/tree/lang/php5/pkg-descr
https://cgit.freebsd.org/ports/tree/lang/php53/pkg-descr
https://cgit.freebsd.org/ports/tree/lang/php5/pkg-descr
https://cgit.freebsd.org/ports/tree/lang/ruby18/pkg-descr
https://cgit.freebsd.org/ports/tree/lang/ruby19/pkg-descr

As a final example, to change the origin of the libglut shared libraries from graphics/libglut to
graphics/freeglut, run:

pkg set -o graphics/libglut:graphics/freeglut

When changing package origins, it is important to reinstall packages that are
dependent on the package with the modified origin. To force a reinstallation of

o dependent packages, run:

pkg install -Rf graphics/freeglut

4.5. Using the Ports Collection

The Ports Collection is a set of Makefiles, patches, and description files. Each set of these files is used
to compile and install an individual application on FreeBSD, and is called a port.

By default, the Ports Collection itself is stored as a subdirectory of /usr/ports.

Before installing and using the Ports Collection, please be aware that it is generally
ill-advised to use the Ports Collection in conjunction with the binary packages
provided via pkg to install software. pkg, by default, tracks quarterly branch-
releases of the ports tree and not HEAD. Dependencies could be different for a port

A in HEAD compared to its counterpart in a quarterly branch release and this could
result in conflicts between dependencies installed by pkg and those from the Ports
Collection. If the Ports Collection and pkg must be used in conjunction, then be
sure that your Ports Collection and pkg are on the same branch release of the ports
tree.

The Ports Collection contains directories for software categories. Inside each category are
subdirectories for individual applications. Each application subdirectory contains a set of files that
tells FreeBSD how to compile and install that program, called a ports skeleton. Each port skeleton
includes these files and directories:

* Makefile: contains statements that specify how the application should be compiled and where
its components should be installed.

 distinfo: contains the names and checksums of the files that must be downloaded to build the
port.

* files/: this directory contains any patches needed for the program to compile and install on
FreeBSD. This directory may also contain other files used to build the port.

» pkg-descr: provides a more detailed description of the program.

» pkg-plist: a list of all the files that will be installed by the port. It also tells the ports system
which files to remove upon deinstallation.

Some ports include pkg-message or other files to handle special situations. For more details on

128

https://cgit.freebsd.org/ports/tree/graphics/libglut/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/freeglut/pkg-descr

these files, and on ports in general, refer to the FreeBSD Porter’s Handbook.

The port does not include the actual source code, also known as a distfile. The extract portion of
building a port will automatically save the downloaded source to /usr/ports/distfiles.

4.5.1. Installing the Ports Collection

Before an application can be compiled using a port, the Ports Collection must first be installed. If it
was not installed during the installation of FreeBSD, use one of the following methods to install it:
Procedure: Portsnap Method

The base system of FreeBSD includes Portsnap. This is a fast and user-friendly tool for
retrieving the Ports Collection and is the recommended choice for most users not running
FreeBSD-CURRENT. This utility connects to a FreeBSD site, verifies the secure key, and
downloads a new copy of the Ports Collection. The key is used to verify the integrity of all
downloaded files.

Note that Portsnap updates are generated from a snapshot of the main branch of the Ports
Collection and cannot be configured to use a different branch (for example, quarterly). If it is
necessary to use a different branch of the Ports Collection (for instance as referenced earlier
in conjunction with binary packages), then the Git method must be used.

1. To download a compressed snapshot of the Ports Collection into /var/db/portsnap:
portsnap fetch

2. When running Portsnap for the first time, extract the snapshot into /usr/ports:
portsnap extract

3. After the first use of Portsnap has been completed as shown above, /usr/ports can be
updated as needed by running:

portsnap fetch
portsnap update

When using fetch, the extract or the update operation may be run consecutively, like so:

portsnap fetch update

129

https://docs.freebsd.org/en/books/porters-handbook/

Procedure: Git Method

If more control over the ports tree is needed or if local changes need to be maintained, or if
running FreeBSD-CURRENT, Git can be used to obtain the Ports Collection. Refer to the Git
Primer for a detailed description of Git.

1. Git must be installed before it can be used to check out the ports tree. If a copy of the ports
tree is already present, install Git like this:

cd /usr/ports/devel/git
make install clean

If the ports tree is not available, or pkg is being used to manage packages, Git can be
installed as a package:

pkg install git
2. Check out a copy of the HEAD branch of the ports tree:
git clone https://git.FreeBSD.org/ports.git /usr/ports
3. Or, check out a copy of a quarterly branch:
git clone https://git.FreeBSD.org/ports.git -b 2020Q3 /usr/ports
4. As needed, update /usr/ports after the initial Git checkout:
git -C /usr/ports pull
5. As needed, switch /usr/ports to a different quarterly branch:

git -C /usr/ports switch 202004

4.5.2. Installing Ports

This section provides basic instructions on using the Ports Collection to install or remove software.
The detailed description of available make targets and environment variables is available in ports(7).

130

https://docs.freebsd.org/en/articles/committers-guide/#git-primer
https://docs.freebsd.org/en/articles/committers-guide/#git-primer
https://www.freebsd.org/cgi/man.cgi?query=ports&sektion=7&format=html

Before compiling any port, be sure to update the Ports Collection as described in
the previous section. Since the installation of any third-party software can
introduce security vulnerabilities, it is recommended to first check

A https://vuxml.freebsd.org/ for known security issues related to the port.
Alternately, run pkg audit -F before installing a new port. This command can be
configured to automatically perform a security audit and an update of the
vulnerability database during the daily security system check. For more
information, refer to pkg-audit(8) and periodic(8).

Using the Ports Collection assumes a working Internet connection. It also requires superuser
privilege.

To compile and install the port, change to the directory of the port to be installed, then type make
install at the prompt. Messages will indicate the progress:

cd /usr/ports/sysutils/1sof

make install

>> 1sof_4.88D.freebsd.tar.gz doesn't seem to exist in /usr/ports/distfiles/.
>> Attempting to fetch from ftp://1lsof.itap.purdue.edu/pub/tools/unix/1sof/.
===> Extracting for 1sof-4.88

[extraction output snipped]

>> Checksum OK for lsof_4.88D.freebsd.tar.gz.
===> Patching for 1sof-4.88.d,8

===> Applying FreeBSD patches for lsof-4.88.d,8
===> (onfiqguring for 1sof-4.88.d,8

[configure output snipped]
===> Building for 1sof-4.88.d,8

[compilation output snipped]

===> Installing for 1sof-4.88.d,8
[installation output snipped]

===> Generating temporary packing list
===> (Compressing manual pages for 1sof-4.88.
===> Registering installation for 1sof-4.88.
===> SECURITY NOTE:
This port has installed the following binaries which execute with
increased privileges.
/usr/local/sbin/1sof
#

d,8
d,8

Since 1sof is a program that runs with increased privileges, a security warning is displayed as it is

131

https://vuxml.freebsd.org/
https://www.freebsd.org/cgi/man.cgi?query=pkg-audit&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=periodic&sektion=8&format=html

installed. Once the installation is complete, the prompt will be returned.

Some shells keep a cache of the commands that are available in the directories listed in the PATH
environment variable, to speed up lookup operations for the executable file of these commands.
Users of the tcsh shell should type rehash so that a newly installed command can be used without
specifying its full path. Use hash -r instead for the sh shell. Refer to the documentation for the shell
for more information.

During installation, a working subdirectory is created which contains all the temporary files used
during compilation. Removing this directory saves disk space and minimizes the chance of
problems later when upgrading to the newer version of the port:

make clean
===> (leaning for 1lsof-88.d,8
#

0 To save this extra step, instead use make install clean when compiling the port.

4.5.2.1. Customizing Ports Installation

Some ports provide build options which can be used to enable or disable application components,
provide security options, or allow for other customizations. Examples include www/firefox,
security/gpgme, and mail/sylpheed-claws. If the port depends upon other ports which have
configurable options, it may pause several times for user interaction as the default behavior is to
prompt the user to select options from a menu. To avoid this and do all of the configuration in one
batch, run make config-recursive within the port skeleton. Then, run make install [clean] to
compile and install the port.

When using config-recursive, the list of ports to configure are gathered by the all-

(r') depends-list target. It is recommended to run make config-recursive until all

- dependent ports options have been defined, and ports options screens no longer
appear, to be certain that all dependency options have been configured.

There are several ways to revisit a port’s build options menu in order to add, remove, or change
these options after a port has been built. One method is to cd into the directory containing the port
and type make config. Another option is to use make showconfig. Another option is to execute make
rmconfig which will remove all selected options and allow you to start over. All of these options, and
others, are explained in great detail in ports(7).

The ports system uses fetch(1) to download the source files, which supports various environment
variables. The FTP_PASSIVE_MODE, FTP_PROXY, and FTP_PASSWORD variables may need to be set if the
FreeBSD system is behind a firewall or FTP/HTTP proxy. See fetch(3) for the complete list of
supported variables.

For users who cannot be connected to the Internet all the time, make fetch can be run within
/usr/ports, to fetch all distfiles, or within a category, such as /usr/ports/net, or within the specific
port skeleton. Note that if a port has any dependencies, running this command in a category or
ports skeleton will not fetch the distfiles of ports from another category. Instead, use make fetch-

132

https://cgit.freebsd.org/ports/tree/www/firefox/pkg-descr
https://cgit.freebsd.org/ports/tree/security/gpgme/pkg-descr
https://cgit.freebsd.org/ports/tree/mail/sylpheed-claws/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=ports&sektion=7&format=html
https://www.freebsd.org/cgi/man.cgi?query=fetch&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=fetch&sektion=3&format=html

recursive to also fetch the distfiles for all the dependencies of a port.

In rare cases, such as when an organization has a local distfiles repository, the MASTER_SITES
variable can be used to override the download locations specified in the Makefile. When using,
specify the alternate location:

cd /usr/ports/directory
make MASTER_SITE_OVERRIDE= \
ftp://ftp.organization.org/pub/FreeBSD/ports/distfiles/ fetch

The WRKDIRPREFIX and PREFIX variables can override the default working and target directories. For
example:

make WRKDIRPREFIX=/usr/home/example/ports install

will compile the port in /usr/home/example/ports and install everything under /usr/local.
make PREFIX=/usr/home/example/local install

will compile the port in /usr/ports and install it in /usr/home/example/local. And:
make WRKDIRPREFIX=../ports PREFIX=../local install

will combine the two.

These can also be set as environmental variables. Refer to the manual page for your shell for
instructions on how to set an environmental variable.

4.5.3. Removing Installed Ports

Installed ports can be uninstalled using pkg delete. Examples for using this command can be found
in the pkg-delete(8) manual page.

Alternately, make deinstall can be run in the port’s directory:

cd /usr/ports/sysutils/1sof

make deinstall

===> Deinstalling for sysutils/lsof

===> Deinstalling

Deinstallation has been requested for the following 1 packages:

1sof-4.88.d,8

The deinstallation will free 229 kB
[1/1] Deleting 1sof-4.88.d,8... done

133

https://www.freebsd.org/cgi/man.cgi?query=pkg-delete&sektion=8&format=html

It is recommended to read the messages as the port is uninstalled. If the port has any applications
that depend upon it, this information will be displayed but the uninstallation will proceed. In such
cases, it may be better to reinstall the application in order to prevent broken dependencies.

4.5.4. Upgrading Ports

Over time, newer versions of software become available in the Ports Collection. This section
describes how to determine which software can be upgraded and how to perform the upgrade.

To determine if newer versions of installed ports are available, ensure that the latest version of the
ports tree is installed, using the updating command described in either “Portsnap Method” or “Git
Method”. On FreeBSD 10 and later, or if the system has been converted to pkg, the following
command will list the installed ports which are out of date:

pkg version -1 "<

For FreeBSD 9.X and lower, the following command will list the installed ports that are out of date:

pkg_version -1 "<

Before attempting an upgrade, read /usr/ports/UPDATING from the top of the file to
the date closest to the last time ports were upgraded or the system was installed.
This file describes various issues and additional steps users may encounter and

o need to perform when updating a port, including such things as file format
changes, changes in locations of configuration files, or any incompatibilities with
previous versions. Make note of any instructions which match any of the ports that
need upgrading and follow these instructions when performing the upgrade.

4.5.4.1. Tools to Upgrade and Manage Ports

The Ports Collection contains several utilities to perform the actual upgrade. Each has its strengths
and weaknesses.

Historically, most installations used either Portmaster or Portupgrade. Synth is a newer alternative.

The choice of which tool is best for a particular system is up to the system
administrator. It is recommended practice to back up your data before using any
of these tools.

4.5.4.2. Upgrading Ports Using Portmaster

ports-mgmt/portmaster is a very small utility for upgrading installed ports. It is designed to use the
tools installed with the FreeBSD base system without depending on other ports or databases. To
install this utility as a port:

134

https://cgit.freebsd.org/ports/tree/ports-mgmt/portmaster/pkg-descr

cd /usr/ports/ports-mgmt/portmaster

make

install clean

Portmaster defines four categories of ports:

* Root port: has no dependencies and is not a dependency of any other ports.

* Trunk port: has no dependencies, but other ports depend upon it.

* Branch port: has dependencies and other ports depend upon it.

* Leaf port: has dependencies but no other ports depend upon it.

To list these categories and search for updates:

portmaster -L

===555
===>>>
S==P

===>>>
===>>>
===>55
===>>>

Root ports (No dependencies, not depended on)
ispell-3.2.06_18

screen-4.0.3

===>>> New version available: screen-4.0.3_1
tepflow-0.21_1

7 root ports

Branch ports (Have dependencies, are depended on)
apache22-2.2.3
===>>> New version available: apache22-2.2.8

Leaf ports (Have dependencies, not depended on)
automake-1.9.6 2

bash-3.1.17

===>>> New version available: bash-3.2.33

32 leaf ports

137 total installed ports
===>>> 83 have new versions available

This command is used to upgrade all outdated ports:

portmaster -a

By default, Portmaster makes a backup package before deleting the existing port. If
the installation of the new version is successful, Portmaster deletes the backup.
Using -b instructs Portmaster not to automatically delete the backup. Adding -i
starts Portmaster in interactive mode, prompting for confirmation before
upgrading each port. Many other options are available. Read through the manual
page for portmaster(8) for details regarding their usage.

135

https://www.freebsd.org/cgi/man.cgi?query=portmaster&sektion=8&format=html

If errors are encountered during the upgrade process, add -f to upgrade and rebuild all ports:

portmaster -af

Portmaster can also be used to install new ports on the system, upgrading all dependencies before
building and installing the new port. To use this function, specify the location of the port in the
Ports Collection:

portmaster shells/bash

More information about ports-mgmt/portmaster may be found in its pkg-descr.

4.5.4.3. Upgrading Ports Using Portupgrade

ports-mgmt/portupgrade is another utility that can be used to upgrade ports. It installs a suite of
applications which can be used to manage ports. However, it is dependent upon Ruby. To install the
port:

cd /usr/ports/ports-mgmt/portupgrade
make install clean

Before performing an upgrade using this utility, it is recommended to scan the list of installed ports
using pkgdb -F and to fix all the inconsistencies it reports.

To upgrade all the outdated ports installed on the system, use portupgrade -a. Alternately, include -1
to be asked for confirmation of every individual upgrade:

portupgrade -ai

To upgrade only a specified application instead of all available ports, use portupgrade pkgname. It is
very important to include -R to first upgrade all the ports required by the given application:

portupgrade -R firefox

If -P is included, Portupgrade searches for available packages in the local directories listed in
PKG_PATH. If none are available locally, it then fetches packages from a remote site. If packages can
not be found locally or fetched remotely, Portupgrade will use ports. To avoid using ports entirely,
specify -PP. This last set of options tells Portupgrade to abort if no packages are available:

portupgrade -PP gnome3

To just fetch the port distfiles, or packages, if -P is specified, without building or installing anything,
use -F. For further information on all of the available switches, refer to the manual page for

136

https://cgit.freebsd.org/ports/tree/ports-mgmt/portmaster/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/portupgrade/pkg-descr

portupgrade.

More information about ports-mgmt/portupgrade may be found in its pkg-descr.

4.5.5. Ports and Disk Space

Using the Ports Collection will use up disk space over time. After building and installing a port,
running make clean within the ports skeleton will clean up the temporary work directory. If
Portmaster is used to install a port, it will automatically remove this directory unless -K is specified.
If Portupgrade is installed, this command will remove all work directories found within the local
copy of the Ports Collection:

portsclean -C

In addition, outdated source distribution files accumulate in /usr/ports/distfiles over time. To use
Portupgrade to delete all the distfiles that are no longer referenced by any ports:

portsclean -D

Portupgrade can remove all distfiles not referenced by any port currently installed on the system:
portsclean -DD

If Portmaster is installed, use:
portmaster --clean-distfiles

By default, this command is interactive and prompts the user to confirm if a distfile should be
deleted.

In addition to these commands, ports-mgmt/pkg_cutleaves automates the task of removing installed
ports that are no longer needed.

4.6. Building Packages with Poudriere

Poudriere is a BSD-licensed utility for creating and testing FreeBSD packages. It uses FreeBSD jails to
set up isolated compilation environments. These jails can be used to build packages for versions of
FreeBSD that are different from the system on which it is installed, and also to build packages for
1386 if the host is an amd64 system. Once the packages are built, they are in a layout identical to the
official mirrors. These packages are usable by pkg(8) and other package management tools.

Poudriere is installed using the ports-mgmt/poudriere package or port. The installation includes a
sample configuration file /usr/local/etc/poudriere.conf.sample. Copy this file to
/usr/local/etc/poudriere.conf. Edit the copied file to suit the local configuration.

137

https://cgit.freebsd.org/ports/tree/ports-mgmt/portupgrade/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/pkg_cutleaves/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/pkg-descr

While ZFS is not required on the system running poudriere, it is beneficial. When ZFS is used, ZPOOL
must be specified in /usr/local/etc/poudriere.conf and FREEBSD_HOST should be set to a nearby mirror.
Defining CCACHE_DIR enables the use of devel/ccache to cache compilation and reduce build times for
frequently-compiled code. It may be convenient to put poudriere datasets in an isolated tree
mounted at /poudriere. Defaults for the other configuration values are adequate.

The number of processor cores detected is used to define how many builds will run in parallel.
Supply enough virtual memory, either with RAM or swap space. If virtual memory runs out, the
compilation jails will stop and be torn down, resulting in weird error messages.

4.6.1. Initialize Jails and Port Trees

After configuration, initialize poudriere so that it installs a jail with the required FreeBSD tree and
a ports tree. Specify a name for the jail using -j and the FreeBSD version with -v. On systems
running FreeBSD/amd64, the architecture can be set with -a to either 1386 or amd64. The default is
the architecture shown by uname.

138

https://cgit.freebsd.org/ports/tree/devel/ccache/pkg-descr

poudriere jail -c -j 11amd64 -v 11.4-RELEASE

[00:00:00] Creating 11amd64 fs at /poudriere/jails/11amd64... done

[00:00:00] Using pre-distributed MANIFEST for FreeBSD 11.4-RELEASE amd64
[00:00:00] Fetching base for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/base.txz 125 MB 4110 kBps 31s
[00:00:33] Extracting base... done

[00:00:54] Fetching src for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/src.txz 154 MB 4178 kBps 38s
[00:01:33] Extracting src... done

[00:02:31] Fetching 1ib32 for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/1ib32.txz 24 MB 3969 kBps 06s
[00:02:38] Extracting 1ib32... done

[00:02:42] Cleaning up... done

[00:02:42] Recording filesystem state for clean... done

[00:02:42] Upgrading using ftp

/etc/resolv.conf -> /poudriere/jails/11amd64/etc/resolv.conf

Looking up update.FreeBSD.org mirrors... 3 mirrors found.

Fetching public key from update4.freebsd.org... done.

Fetching metadata signature for 11.4-RELEASE from updated.freebsd.org... done.
Fetching metadata index... done.

Fetching 2 metadata files... done.

Inspecting system... done.

Preparing to download files... done.

Fetching 124

patches..... 10....20....30....40....50....60....70....80....90....100....110....120..

done.

Applying patches... done.

Fetching 6 files... done.

The following files will be added as part of updating to
11.4-RELEASE-p1:

/usr/src/contrib/unbound/.github
/usr/src/contrib/unbound/.github/FUNDING.yml
/usr/src/contrib/unbound/contrib/drop2rpz
/usr/src/contrib/unbound/contrib/unbound_portable.service.in
/usr/src/contrib/unbound/services/rpz.c
/usr/src/contrib/unbound/services/rpz.h
/usr/src/1ib/1libc/tests/gen/spawnp_enoexec.sh

The following files will be updated as part of updating to
11.4-RELEASE-p1:

[

Installing updates...Scanning //usr/share/certs/blacklisted for certificates...
Scanning //usr/share/certs/trusted for certificates...

done.

11.4-RELEASE-p1

[00:04:06] Recording filesystem state for clean... done
[00:04:07] Jail 11amd64 11.4-RELEASE-p1 amd64 is ready to be used

139

poudriere ports -c -p local -m git+https
[00:00:00] Creating local fs at /poudriere/ports/local... done
[00:00:00] Checking out the ports tree... done

On a single computer, poudriere can build ports with multiple configurations, in multiple jails, and
from different port trees. Custom configurations for these combinations are called sets. See the
CUSTOMIZATION section of poudriere(8) for details after ports-mgmt/poudriere or ports-
mgmt/poudriere-devel is installed.

The basic configuration shown here puts a single jail-, port-, and set-specific make.conf in
/usr/local/etc/poudriere.d. The filename in this example is created by combining the jail name, port
name, and set name: 11lamd64-local-workstation-make.conf. The system make.conf and this new
file are combined at build time to create the make.conf used by the build jail.

Packages to be built are entered in 11amd64-local-workstation-pkglist:

editors/emacs
devel/qgit
ports-mgmt/pkg

Options and dependencies for the specified ports are configured:

poudriere options -j 11amd64 -p local -z workstation -f 11amd64-local-workstation-
pkglist

Finally, packages are built and a package repository is created:

poudriere bulk -j 11amd64 -p local -z workstation -f 11amd64-local-workstation-
pkglist

While running, pressing Ctrl + t displays the current state of the build. Poudriere also builds files in
/poudriere/logs/bulk/jailname that can be used with a web server to display build information.

After completion, the new packages are now available for installation from the poudriere
repository.

For more information on wusing poudriere, see poudriere(8) and the main web site,
https://github.com/freebsd/poudriere/wiki.

4.6.2. Configuring pkg Clients to Use a Poudriere Repository

While it is possible to use both a custom repository along side of the official repository, sometimes it
is useful to disable the official repository. This is done by creating a configuration file that overrides
and disables the official configuration file. Create /usr/local/etc/pkg/repos/FreeBSD.conf that

140

https://www.freebsd.org/cgi/man.cgi?query=poudriere&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere-devel/pkg-descr
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere-devel/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=poudriere&sektion=8&format=html
https://github.com/freebsd/poudriere/wiki

contains the following:

FreeBSD: {
enabled: no

}

Usually it is easiest to serve a poudriere repository to the client machines via HTTP. Set up a
webserver to serve up the package directory, for instance:
/usr/local/poudriere/data/packages/11amd64, where 11amd64 is the name of the build.

If the URL to the package repository is: http://pkg.example.com/11amd64, then the repository
configuration file in /usr/local/etc/pkg/repos/custom.conf would look like:

custom: {
url: "http://pkg.example.com/11amd64",
enabled: yes,

4.7. Post-Installation Considerations

Regardless of whether the software was installed from a binary package or port, most third-party
applications require some level of configuration after installation. The following commands and
locations can be used to help determine what was installed with the application.

* Most applications install at least one default configuration file in /usr/local/etc. In cases where
an application has a large number of configuration files, a subdirectory will be created to hold
them. Often, sample configuration files are installed which end with a suffix such as .sample.
The configuration files should be reviewed and possibly edited to meet the system’s needs. To
edit a sample file, first copy it without the .sample extension.

» Applications which provide documentation will install it into /usr/local/share/doc and many
applications also install manual pages. This documentation should be consulted before
continuing.

* Some applications run services which must be added to /etc/rc.conf before starting the
application. These applications usually install a startup script in /usr/local/etc/rc.d. See Starting
Services for more information.

By design, applications do not run their startup script upon installation, nor do
o they run their stop script upon deinstallation or upgrade. This decision is left to
the individual system administrator.

» Users of csh(1) should run rehash to rebuild the known binary list in the shells PATH.

* Use pkg info to determine which files, man pages, and binaries were installed with the
application.

141

http://pkg.example.com/11amd64
http://pkg.example.com/11amd64
http://pkg.example.com/11amd64
../config/index.html#configtuning-starting-services
../config/index.html#configtuning-starting-services
https://www.freebsd.org/cgi/man.cgi?query=csh&sektion=1&format=html

4.8. Dealing with Broken Ports

When a port does not build or install, try the following:

1.

142

Search to see if there is a fix pending for the port in the Problem Report database. If so,
implementing the proposed fix may fix the issue.

Ask the maintainer of the port for help. Type make maintainer in the ports skeleton or read the
port’s Makefile to find the maintainer’s email address. Remember to include the output leading
up to the error in the email to the maintainer.

Some ports are not maintained by an individual but instead by a group
maintainer represented by a mailing list. Many, but not all, of these addresses
look like freebsd-listname@FreeBSD.org. Please take this into account when
sending an email.

In particular, ports maintained by ports@FreeBSD.org are not maintained by a
specific individual. Instead, any fixes and support come from the general
community who subscribe to that mailing list. More volunteers are always
needed!

If there is no response to the email, use Bugzilla to submit a bug report using the instructions in
Writing FreeBSD Problem Reports.

Fix it! The Porter’s Handbook includes detailed information on the ports infrastructure so that
you can fix the occasional broken port or even submit your own!

Install the package instead of the port using the instructions in Using pkg for Binary Package
Management.

https://www.FreeBSD.org/support/
https://docs.freebsd.org/en/articles/mailing-list-faq/
mailto:freebsd-listname@FreeBSD.org
mailto:ports@FreeBSD.org
https://docs.freebsd.org/en/articles/problem-reports/
https://docs.freebsd.org/en/books/porters-handbook/

Chapter 5. The X Window System

5.1. Synopsis

An installation of FreeBSD using bsdinstall does not automatically install a graphical user interface.
This chapter describes how to install and configure Xorg, which provides the open source X
Window System used to provide a graphical environment. It then describes how to find and install
a desktop environment or window manager.

o Users who prefer an installation method that automatically configures the Xorg
should refer to GhostBSD, MidnightBSD or NomadBSD.

For more information on the video hardware that Xorg supports, refer to the x.org website.
After reading this chapter, you will know:

* The various components of the X Window System, and how they interoperate.

* How to install and configure Xorg.

* How to install and configure several window managers and desktop environments.
* How to use TrueType® fonts in Xorg.

* How to set up your system for graphical logins (XDM).
Before reading this chapter, you should:

* Know how to install additional third-party software as described in Installing Applications:
Packages and Ports.

5.2. Terminology

While it is not necessary to understand all of the details of the various components in the X
Window System and how they interact, some basic knowledge of these components can be useful.

X server

X was designed from the beginning to be network-centric, and adopts a "client-server" model. In
this model, the "X server" runs on the computer that has the keyboard, monitor, and mouse
attached. The server’s responsibility includes tasks such as managing the display, handling input
from the keyboard and mouse, and handling input or output from other devices such as a tablet
or a video projector. This confuses some people, because the X terminology is exactly backward
to what they expect. They expect the "X server" to be the big powerful machine down the hall,
and the "X client” to be the machine on their desk.

X client

Each X application, such as XTerm or Firefox, is a "client". A client sends messages to the server
such as "Please draw a window at these coordinates"”, and the server sends back messages such
as "The user just clicked on the OK button".

143

https://ghostbsd.org
https://www.midnightbsd.org
https://nomadbsd.org
http://www.x.org/
../ports/index.html#ports
../ports/index.html#ports

In a home or small office environment, the X server and the X clients commonly run on the same
computer. It is also possible to run the X server on a less powerful computer and to run the X
applications on a more powerful system. In this scenario, the communication between the X
client and server takes place over the network.

window manager

X does not dictate what windows should look like on-screen, how to move them around with the
mouse, which keystrokes should be used to move between windows, what the title bars on each
window should look like, whether or not they have close buttons on them, and so on. Instead, X
delegates this responsibility to a separate window manager application. There are dozens of
window managers available. Each window manager provides a different look and feel: some
support virtual desktops, some allow customized keystrokes to manage the desktop, some have a
"Start" button, and some are themeable, allowing a complete change of the desktop’s look-and-
feel. Window managers are available in the x11-wm category of the Ports Collection.

Each window manager uses a different configuration mechanism. Some expect configuration
file written by hand while others provide graphical tools for most configuration tasks.

desktop environment

KDE and GNOME are considered to be desktop environments as they include an entire suite of
applications for performing common desktop tasks. These may include office suites, web
browsers, and games.

focus policy

The window manager is responsible for the mouse focus policy. This policy provides some
means for choosing which window is actively receiving keystrokes and it should also visibly
indicate which window is currently active.

One focus policy is called "click-to-focus". In this model, a window becomes active upon
receiving a mouse click. In the "focus-follows-mouse" policy, the window that is under the mouse
pointer has focus and the focus is changed by pointing at another window. If the mouse is over
the root window, then this window is focused. In the "sloppy-focus" model, if the mouse is moved
over the root window, the most recently used window still has the focus. With sloppy-focus,
focus is only changed when the cursor enters a new window, and not when exiting the current
window. In the "click-to-focus" policy, the active window is selected by mouse click. The window
may then be raised and appear in front of all other windows. All keystrokes will now be directed
to this window, even if the cursor is moved to another window.

Different window managers support different focus models. All of them support click-to-focus,
and the majority of them also support other policies. Consult the documentation for the window
manager to determine which focus models are available.

widgets
Widget is a term for all of the items in the user interface that can be clicked or manipulated in
some way. This includes buttons, check boxes, radio buttons, icons, and lists. A widget toolkit is a
set of widgets used to create graphical applications. There are several popular widget toolkits,
including Qt, used by KDE, and GTK+, used by GNOME. As a result, applications will have a
different look and feel, depending upon which widget toolkit was used to create the application.

144

http://www.xwinman.org/
http://www.xwinman.org/

5.3. Installing Xorg

On FreeBSD, Xorg can be installed as a package or port.

The binary package can be installed quickly but with fewer options for customization:
pkg install xorg
To build and install from the Ports Collection:

cd /usr/ports/x11/xorg
make install clean

Either of these installations results in the complete Xorg system being installed. Binary packages
are the best option for most users.

A smaller version of the X system suitable for experienced users is available in x11/xorg-minimal.
Most of the documents, libraries, and applications will not be installed. Some applications require
these additional components to function.

5.4. Xorg Configuration

5.4.1. Quick Start

Xorg supports most common video cards, keyboards, and pointing devices.

Video cards, monitors, and input devices are automatically detected and do not
7 . . . :
O require any manual configuration. Do not create xorg.conf or run a -configure step
-
unless automatic configuration fails.

1. If Xorg has been used on this computer before, move or remove any existing configuration files:

mv /etc/X11/xorg.conf ~/xorg.conf.etc
mv /usr/local/etc/X11/xorg.conf ~/xorg.conf.localetc

2. Add the user who will run Xorg to the video or wheel group to enable 3D acceleration when
available. To add user jru to whichever group is available:

pw groupmod video -m jru || pw groupmod wheel -m jru
3. The TWM window manager is included by default. It is started when Xorg starts:

% startx

145

https://cgit.freebsd.org/ports/tree/x11/xorg-minimal/pkg-descr

4. On some older versions of FreeBSD, the system console must be set to vit(4) before switching
back to the text console will work properly. See Kernel Mode Setting (KMS).

5.4.2. User Group for Accelerated Video

Access to /dev/dri is needed to allow 3D acceleration on video cards. It is usually simplest to add the
user who will be running X to either the video or wheel group. Here, pw(8) is used to add user
slurms to the video group, or to the wheel group if there is no video group:

pw groupmod video -m slurms || pw groupmod wheel -m slurms

5.4.3. Kernel Mode Setting (KMS)

When the computer switches from displaying the console to a higher screen resolution for X, it
must set the video output mode. Recent versions of Xorg use a system inside the kernel to do these
mode changes more efficiently. Older versions of FreeBSD use sc(4), which is not aware of the KMS
system. The end result is that after closing X, the system console is blank, even though it is still
working. The newer vt(4) console avoids this problem.

Add this line to /boot/loader.conf to enable vt(4):

kern.vty=vt

5.4.4. Configuration Files

Manual configuration is usually not necessary. Please do not manually create configuration files
unless autoconfiguration does not work.

5.4.4.1. Directory

Xorg looks in several directories for configuration files. /usr/local/etc/X11/ is the recommended
directory for these files on FreeBSD. Using this directory helps keep application files separate from
operating system files.

Storing configuration files in the legacy /etc/X11/ still works. However, this mixes application files
with the base FreeBSD files and is not recommended.

5.4.4.2. Single or Multiple Files

It is easier to use multiple files that each configure a specific setting than the traditional single
xorg.conf. These files are stored in the xorg.conf.d/ subdirectory of the main configuration file
directory. The full path is typically /usr/local/etc/X11/xorg.conf.d/.

Examples of these files are shown later in this section.

The traditional single xorg.conf still works, but is neither as clear nor as flexible as multiple files in
the xorg.conf.d/ subdirectory.

146

https://www.freebsd.org/cgi/man.cgi?query=vt&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=sc&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=vt&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=vt&sektion=4&format=html

5.4.5. Video Cards

The Ports framework provides the drm graphics drivers necessary for X11 operation on recent
hardware. Users can use one of the following drivers available from graphics/drm-kmod. These
drivers use interfaces in the kernel that are normally private. As such, it is strongly recommended
that the drivers be built via the ports system via the PORTS_MODULES variable. With PORTS_MODULES,
every time you build the kernel, the corresponding port(s) containing kernel modules are re-built
against the updated sources. This ensures the kernel module stays in-sync with the kernel itself. The
kernel and ports trees should be updated together for maximum compatibility. You can add
PORTS_MODULES to your /etc/make.conf file to ensure all kernels you build rebuild this module.
Advanced users can add it to their kernel config files with the makeoptions directive. If you run
GENERIC and use freebsd-update, you can just build the graphics/drm-kmod or x11/nvidia-driver
port after each freebsd-update install invocation.

/etc/make.conf

SYSDIR=path/to/src/sys
PORTS_MODULES=graphics/drm-kmod x11/nvidia-driver

This will rebuild everything, but can select one or the other depending on which GPU /
graphics card you have.

Intel KMS driver, Radeon KMS driver, AMD KMS driver

2D and 3D acceleration is supported on most Intel KMS driver graphics cards provided by Intel.
Driver name: i915kms

2D and 3D acceleration is supported on most older Radeon KMS driver graphics cards provided
by AMD.

Driver name: radeonkms

2D and 3D acceleration is supported on most newer AMD KMS driver graphics cards provided by
AMD.

Driver name: amdgpu

For reference, please see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units or
https://en.wikipedia.org/wiki/List_of AMD_graphics_processing_units for a list of supported
GPUs.

Intel®

3D acceleration is supported on most Intel® graphics up to Ivy Bridge (HD Graphics 2500, 4000,
and P4000), including Iron Lake (HD Graphics) and Sandy Bridge (HD Graphics 2000).

Driver name: intel

For reference, see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units.

147

https://cgit.freebsd.org/ports/tree/graphics/drm-kmod/pkg-descr
https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units

AMD® Radeon

2D and 3D acceleration is supported on Radeon cards up to and including the HD6000 series.
Driver name: radeon
For reference, see https://en.wikipedia.org/wiki/List_of AMD_graphics_processing_units.

NVIDIA

Several NVIDIA drivers are available in the x11 category of the Ports Collection. Install the driver
that matches the video card.

For reference, see https://en.wikipedia.org/wiki/List_of Nvidia_graphics_processing_units.

Kernel support for NVIDIA cards is found in either the x11/nvidia-driver port or the x11/nvidia-
driver-xxx port. Modern cards use the former. Legacy cards use the -xxx ports, where xxx is one
of 304, 340 or 390 indicating the version of the driver. For those, fill in the -xxx using the
Supported NVIDIA GPU Products page. This page lists the devices supported by different
versions of the driver. Legacy drivers run on both i386 and amd64. The current driver only
supports amd64. Read installation and configuration of NVIDIA driver for details. While we
recommend this driver be rebuilt with each kernel rebuild for maximum safety, it uses almost
no private kernel interfaces and is usually safe across kernel updates.

Hybrid Combination Graphics

Some notebook computers add additional graphics processing units to those built into the
chipset or processor. Optimus combines Intel® and NVIDIA hardware. Switchable Graphics or
Hybrid Graphics are a combination of an Intel® or AMD® processor and an AMD® Radeon GPU.

Implementations of these hybrid graphics systems vary, and Xorg on FreeBSD is not able to drive
all versions of them.

Some computers provide a BIOS option to disable one of the graphics adapters or select a discrete
mode which can be used with one of the standard video card drivers. For example, it is
sometimes possible to disable the NVIDIA GPU in an Optimus system. The Intel® video can then
be used with an Intel® driver.

BIOS settings depend on the model of computer. In some situations, both GPUs can be left enabled,
but creating a configuration file that only uses the main GPU in the Device section is enough to
make such a system functional.

Other Video Cards

Drivers for some less-common video cards can be found in the x11-drivers directory of the Ports
Collection.

Cards that are not supported by a specific driver might still be usable with the x11-drivers/xf86-
video-vesa driver. This driver is installed by x11/xorg. It can also be installed manually as x11-
drivers/xf86-video-vesa. Xorg attempts to use this driver when a specific driver is not found for
the video card.

x11-drivers/xf86-video-scfb is a similar nonspecialized video driver that works on many UEFI
and ARM® computers.

148

https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
http://download.nvidia.com/XFree86/FreeBSD-x86_64/465.19.01/README/
http://download.nvidia.com/XFree86/FreeBSD-x86_64/465.19.01/README/
http://download.nvidia.com/XFree86/FreeBSD-x86_64/465.19.01/README/
https://cgit.freebsd.org/ports/tree/x11-drivers/xf86-video-vesa/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-drivers/xf86-video-vesa/pkg-descr
https://cgit.freebsd.org/ports/tree/x11/xorg/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-drivers/xf86-video-vesa/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-drivers/xf86-video-vesa/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-drivers/xf86-video-scfb/pkg-descr

Setting the Video Driver in a File

To set the Intel® driver in a configuration file:

Example 14. Select Intel® Video Driver in a File

/usr/local/etc/X11/xorg.conf.d/driver-intel.conf

Section "Device"
Identifier "Card@"

Driver "intel"
BusID "PCI:1:0:0"
EndSection

If more than one video card is present, the BusID identifier can be uncommented and set to
select the desired card. A list of video card bus IDs can be displayed with pciconf -1v | grep

-B3 display.

To set the Radeon driver in a configuration file:

Example 15. Select Radeon Video Driver in a File

/usr/local/etc/X11/xorg.conf.d/driver-radeon.conf

Section "Device"
Identifier "Card0"
Driver "radeon”

EndSection

To set the VESA driver in a configuration file:

Example 16. Select VESA Video Driver in a File

/usr/local/etc/X11/xorg.conf.d/driver-vesa.conf

Section "Device"
Identifier "Card0"
Driver "vesa"

EndSection

To set the scfb driver for use with a UEFI or ARM® computer:

149

Example 17. Select scfb Video Driver in a File

/usr/local/etc/X11/xorg.conf.d/driver-scth.conf

Section "Device"
Identifier "Card@"
Driver "scfb"

EndSection

5.4.6. Monitors

Almost all monitors support the Extended Display Identification Data standard (EDID). Xorg uses
EDID to communicate with the monitor and detect the supported resolutions and refresh rates. Then
it selects the most appropriate combination of settings to use with that monitor.

Other resolutions supported by the monitor can be chosen by setting the desired resolution in
configuration files, or after the X server has been started with xrandr(1).

Using xrandr(1)

Run xrandr(1) without any parameters to see a list of video outputs and detected monitor
modes:

% xrandr
Screen @: minimum 320 x 200, current 3000 x 1920, maximum 8192 x 8192
DVI-0 connected primary 1920x1200+1080+0 (normal left inverted right x axis y axis)
495mm x 310mm
1920x1200 59.95*%+
1600x1200 60.00
1280x1024 85.02 75.02 60.02

1280x960 60.00

1152x864 75.00

1024x768 85.00 75.08 70.07 60.00
832x624 74.55

800x600 75.00 60.32

640x480 75.00 60.00

720x400 70.08

DisplayPort-0 disconnected (normal left inverted right x axis y axis)
HDMI-@ disconnected (normal left inverted right x axis y axis)

This shows that the DVI-0 output is being used to display a screen resolution of 1920x1200 pixels
at a refresh rate of about 60 Hz. Monitors are not attached to the DisplayPort-0 and HDMI-0
connectors.

Any of the other display modes can be selected with xrandr(1). For example, to switch to
1280x1024 at 60 Hz:

150

https://www.freebsd.org/cgi/man.cgi?query=xrandr&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=xrandr&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=xrandr&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=xrandr&sektion=1&format=html

% xrandr --output DVI-@ --mode 1280x1024 --rate 60

A common task is using the external video output on a notebook computer for a video projector.

The type and quantity of output connectors varies between devices, and the name given to each
output varies from driver to driver. What one driver calls HDMI-1, another might call HDMI1. So
the first step is to run xrandr(1) to list all the available outputs:

0,

% xrandr
Screen @: minimum 320 x 200, current 1366 x 768, maximum 8192 x 8192
LVDS1 connected 1366x768+0+@ (normal left inverted right x axis y axis) 344mm x

193mm
1366x768 60.04*+
1024x768 60.00
800x600 60.32 56.25
640x480 59.94

VGA1 connected (normal left inverted right x axis y axis)
1280x1024 60.02 + 75.02

1280x960 60.00

1152x864 75.00

1024x768 75.08 70.07 60.00

832x624 74.55

800x600 72.19 75.00 60.32 56.25
640x480 75.00 72.81 66.67 60.00
720x400 70.08

HDMIT disconnected (normal left inverted right x axis y axis)
DP1 disconnected (normal left inverted right x axis y axis)

Four outputs were found: the built-in panel LVDS1, and external VGA1, HDMI1, and DP1 connectors.

The projector has been connected to the VGA1 output. xrandr(1) is now used to set that output to
the native resolution of the projector and add the additional space to the right side of the
desktop:

% xrandr --output VGA1 --auto --right-of LVDS1

--auto chooses the resolution and refresh rate detected by EDID. If the resolution is not correctly
detected, a fixed value can be given with --mode instead of the --auto statement. For example,
most projectors can be used with a 1024x768 resolution, which is set with --mode 1024x768.

xrandr(1) is often run from .xinitrc to set the appropriate mode when X starts.

Setting Monitor Resolution in a File

To set a screen resolution of 1024x768 in a configuration file:

151

https://www.freebsd.org/cgi/man.cgi?query=xrandr&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=xrandr&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=xrandr&sektion=1&format=html

Example 18. Set Screen Resolution in a File

/usr/local/etc/X11/xorg.conf.d/screen-resolution.conf

Section "Screen"
Identifier "Screen@"
Device "Cardo"
SubSection "Display”
Modes "1024x768"
EndSubSection

EndSection

The few monitors that do not have EDID can be configured by setting HorizSync and VertRefresh
to the range of frequencies supported by the monitor.

Example 19. Manually Setting Monitor Frequencies

/usr/local/etc/X11/xorg.conf.d/monitor0-freq.conf

Section "Monitor"
Identifier "Monitor@"
HorizSync 30-83 # kHz
VertRefresh 50-76 # Hz
EndSection

5.4.7. Input Devices

5.4.7.1. Keyboards

Keyboard Layout

The standardized location of keys on a keyboard is called a layout. Layouts and other adjustable
parameters are listed in xkeyboard-config(7).

A United States layout is the default. To select an alternate layout, set the XkbLayout and
XkbVariant options in an InputClass. This will be applied to all input devices that match the class.

This example selects a French keyboard layout.

152

https://www.freebsd.org/cgi/man.cgi?query=xkeyboard-config&sektion=7&format=html

Example 20. Setting a Keyboard Layout

/usr/local/etc/X11/xorg.conf.d/keyboard-fr.conf

Section "InputClass"
Identifier "KeyboardDefaults"
MatchIsKeyboard "on"
Option "XkbLayout" "fr"
EndSection

Example 21. Setting Multiple Keyboard Layouts

Set United States, Spanish, and Ukrainian keyboard layouts. Cycle through these layouts by
pressing Alt + Shift. x11/xxkb or x11/shxkb can be used for improved layout switching
control and current layout indicators.

/usr/local/etc/X11/xorg.conf.d/kbd-layout-multi.conf

Section "InputClass”
Identifier "All Keyboards"
MatchIsKeyboard "yes"
Option "XkbLayout" "us, es, ua"
EndSection

Closing Xorg From the Keyboard
X can be closed with a combination of keys. By default, that key combination is not set because it
conflicts with keyboard commands for some applications. Enabling this option requires changes
to the keyboard InputDevice section:

Example 22. Enabling Keyboard Exit from X

/usr/local/etc/X11/xorg.conf.d/keyboard-zap.conf

Section "InputClass"

Identifier "KeyboardDefaults"

MatchIsKeyboard "on"

Option "XkbOptions" "terminate:ctrl_alt_bksp"
EndSection

5.4.7.2. Mice and Pointing Devices

o If using xorg-server 1.20.8 or later under FreeBSD 12.1 and not using moused(8),
add kern.evdev.rcpt_mask=12 to /etc/sysctl.conf.

153

https://cgit.freebsd.org/ports/tree/x11/xxkb/pkg-descr
https://cgit.freebsd.org/ports/tree/x11/sbxkb/pkg-descr
https://cgit.freebsd.org/ports/tree/xorg-server/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=moused&sektion=8&format=html

Many mouse parameters can be adjusted with configuration options. See mousedrv(4) for a full list.

Mouse Buttons

The number of buttons on a mouse can be set in the mouse InputDevice section of xorg.conf. To
set the number of buttons to 7:

Example 23. Setting the Number of Mouse Buttons

/usr/local/etc/X11/xorg.conf.d/mouse0-buttons.conf

Section "InputDevice"
Identifier "Mouse"
Option "Buttons" "7"

EndSection

5.4.8. Manual Configuration

In some cases, Xorg autoconfiguration does not work with particular hardware, or a different
configuration is desired. For these cases, a custom configuration file can be created.

ﬁ Do not create manual configuration files unless required. Unnecessary manual
configuration can prevent proper operation.

A configuration file can be generated by Xorg based on the detected hardware. This file is often a
useful starting point for custom configurations.

Generating an xorg.conf:
Xorg -confiqure

The configuration file is saved to /root/xorg.conf.new. Make any changes desired, then test that file
(using -retro so there is a visible background) with:

Xorg -retro -config /root/xorg.conf.new

After the new configuration has been adjusted and tested, it can be split into smaller files in the
normal location, /usr/local/etc/X11/xorg.conf.d/.

5.5. Using Fonts in Xorg

5.5.1. Typel Fonts

The default fonts that ship with Xorg are less than ideal for typical desktop publishing applications.
Large presentation fonts show up jagged and unprofessional looking, and small fonts are almost
completely unintelligible. However, there are several free, high quality Typel (PostScript®) fonts

154

https://www.freebsd.org/cgi/man.cgi?query=mousedrv&sektion=4&format=html

available which can be readily used with Xorg. For instance, the URW font collection (x11-
fonts/urwfonts) includes high quality versions of standard typel fonts (Times Roman™, Helvetica™,
Palatino™ and others). The Freefonts collection (x11-fonts/freefonts) includes many more fonts, but
most of them are intended for use in graphics software such as the Gimp, and are not complete
enough to serve as screen fonts. In addition, Xorg can be configured to use TrueType® fonts with a
minimum of effort. For more details on this, see the X(7) manual page or TrueType® Fonts.

To install the above Type1 font collections from binary packages, run the following commands:

pkg install urwfonts

Alternatively, to build from the Ports Collection, run the following commands:

cd /usr/ports/x11-fonts/urwfonts
make install clean

And likewise with the freefont or other collections. To have the X server detect these fonts, add an
appropriate line to the X server configuration file (/etc/X11/xorg.conf), which reads:

FontPath "/usr/local/share/fonts/urwfonts/"

Alternatively, at the command line in the X session run:

% xset fp+ /usr/local/share/fonts/urwfonts
% xset fp rehash

This will work but will be lost when the X session is closed, unless it is added to the startup file
(~/xinitrc for a normal startx session, or ~/.xsession when logging in through a graphical login
manager like XDM). A third way is to use the new /usr/local/etc/fonts/local.conf as demonstrated in
Anti-Aliased Fonts.

5.5.2. TrueType® Fonts

Xorg has built in support for rendering TrueType® fonts. There are two different modules that can
enable this functionality. The freetype module is used in this example because it is more consistent
with the other font rendering back-ends. To enable the freetype module just add the following line
to the "Module" section of /etc/X11/xorg.conf.

Load "freetype"

Now make a directory for the TrueType® fonts (for example, /usr/local/share/fonts/TrueType) and
copy all of the TrueType® fonts into this directory. Keep in mind that TrueType® fonts cannot be
directly taken from an Apple® Mac®; they must be in UNIX®/MS-DOS®/Windows® format for use
by Xorg. Once the files have been copied into this directory, use mkfontscale to create a fonts.dir, so

155

https://cgit.freebsd.org/ports/tree/x11-fonts/urwfonts/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-fonts/urwfonts/pkg-descr
https://cgit.freebsd.org/ports/tree/x11-fonts/freefonts/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=X&sektion=7&format=html

that the X font renderer knows that these new files have been installed. mkfontscale can be installed
as a package:

pkg install mkfontscale

Then create an index of X font files in a directory:

cd /usr/local/share/fonts/TrueType
mkfontscale

Now add the TrueType® directory to the font path. This is just the same as described in Typel
Fonts:

% xset fp+ /usr/local/share/fonts/TrueType
% xset fp rehash

or add a FontPath line to xorg.conf.

Now Gimp, LibreOffice, and all of the other X applications should now recognize the installed
TrueType® fonts. Extremely small fonts (as with text in a high resolution display on a web page)
and extremely large fonts (within LibreOffice) will look much better now.

5.5.3. Anti-Aliased Fonts

All fonts in Xorg that are found in /usr/local/share/fonts/ and ~/.fonts/ are automatically made
available for anti-aliasing to Xft-aware applications. Most recent applications are Xft-aware,
including KDE, GNOME, and Firefox.

To control which fonts are anti-aliased, or to configure anti-aliasing properties, create (or edit, if it
already exists) the file /usr/local/etc/fonts/local.conf. Several advanced features of the Xft font
system can be tuned using this file; this section describes only some simple possibilities. For more
details, please see fonts-conf(5).

This file must be in XML format. Pay careful attention to case, and make sure all tags are properly
closed. The file begins with the usual XML header followed by a DOCTYPE definition, and then the
<fontconfig> tag:

<?xml version="1.0"7>
<IDOCTYPE fontconfig SYSTEM "fonts.dtd">
<fontconfig>

As previously stated, all fonts in /usr/local/share/fonts/ as well as ~/.fonts/ are already made
available to Xft-aware applications. To add another directory outside of these two directory trees,
add a line like this to /usr/local/etc/fonts/local.conf:

156

https://www.freebsd.org/cgi/man.cgi?query=fonts-conf&sektion=5&format=html

<dir>/path/to/my/fonts</dir>

After adding new fonts, and especially new font directories, rebuild the font caches:

fc-cache -f

Anti-aliasing makes borders slightly fuzzy, which makes very small text more readable and
removes "staircases" from large text, but can cause eyestrain if applied to normal text. To exclude
font sizes smaller than 14 point from anti-aliasing, include these lines:

<match target="font">
<test name="size" compare="1less">

<double>14</double>
</test>
<edit name="antialias" mode="assign">
<bool>false</bool>
</edit>
</match>

<match target="font">
<test name="pixelsize" compare="less" qual="any">

<double>14</double>
</test>
<edit mode="assign" name="antialias">
<bool>false</bool>
</edit>
</match>

Spacing for some monospaced fonts might also be inappropriate with anti-aliasing. This seems to be
an issue with KDE, in particular. One possible fix is to force the spacing for such fonts to be 100.
Add these lines:

157

<match target="pattern" name="family">
<test qual="any" name="family">
<string>fixed</string>
</test>
<edit name="family" mode="assign">
<string>mono</string>
</edit>
</match>
<match target="pattern" name="family">
<test qual="any" name="family">
<string>console</string>
</test>
<edit name="family" mode="assign">
<string>mono</string>
</edit>
</match>

(this aliases the other common names for fixed fonts as "mono"), and then add:

<match target="pattern" name="family">
<test qual="any" name="family">
<string>mono</string>

</test>
<edit name="spacing" mode="assign">
<int>100</int>
</edit>
</match>

Certain fonts, such as Helvetica, may have a problem when anti-aliased. Usually this manifests itself
as a font that seems cut in half vertically. At worst, it may cause applications to crash. To avoid this,

consider adding the following to local.conf:

<match target="pattern" name="family">
<test qual="any" name="family">
<string>Helvetica</string>
</test>
<edit name="family" mode="assign">
<string>sans-serif</string>
</edit>

</match>

After editing local.conf, make certain to end the file with the </fontconfig> tag. Not doing this will

cause changes to be ignored.

Users can add personalized settings by creating their own ~/.config/fontconfig/fonts.conf. This file

uses the same XML format described above.

158

One last point: with an LCD screen, sub-pixel sampling may be desired. This basically treats the
(horizontally separated) red, green and blue components separately to improve the horizontal
resolution; the results can be dramatic. To enable this, add the line somewhere in local.conf:

<match target="font">
<test qual="all" name="rgba">
<const>unknown</const>

</test>
<edit name="rgba" mode="assign">
<const>rgb</const>
</edit>
</match>

o Depending on the sort of display, rgb may need to be changed to bgr, vrgb or vbgr:
experiment and see which works best.

5.6. The X Display Manager

Xorg provides an X Display Manager, XDM, which can be used for login session management. XDM
provides a graphical interface for choosing which display server to connect to and for entering
authorization information such as a login and password combination.

This section demonstrates how to configure the X Display Manager on FreeBSD. Some desktop
environments provide their own graphical login manager. Refer to GNOME for instructions on how
to configure the GNOME Display Manager and KDE for instructions on how to configure the KDE
Display Manager.

5.6.1. Configuring XDM
To install XDM, use the x11/xdm package or port. Once installed, XDM can be configured to run
when the machine boots up by adding the following line to /etc/rc.conf:

xdm_enable="YES"

XDM will run on the ninth virtual terminal by default.

The XDM configuration directory is located in /usr/local/etc/X11/xdm. This directory contains
several files used to change the behavior and appearance of XDM, as well as a few scripts and
programs used to set up the desktop when XDM is running. XDM Configuration Files summarizes
the function of each of these files. The exact syntax and usage of these files is described in xdm(8).

Table 7. XDM Configuration Files

159

https://cgit.freebsd.org/ports/tree/x11/xdm/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=xdm&sektion=8&format=html

File Description

Xaccess The protocol for connecting to XDM is called the
X Display Manager Connection Protocol (XDMCP).
This file is a client authorization ruleset for
controlling XDMCP connections from remote
machines. By default, this file does not allow any
remote clients to connect.

Xresources This file controls the look and feel of the XDM
display chooser and login screens. The default
configuration is a simple rectangular login
window with the hostname of the machine
displayed at the top in a large font and "Login:"
and "Password:" prompts below. The format of
this file is identical to the app-defaults file
described in the Xorg documentation.

Xservers The list of local and remote displays the chooser
should provide as login choices.

Xsession Default session script for logins which is run by
XDM after a user has logged in. This points to a
customized session script in ~/.xsession.

Xsetup_* Script to automatically launch applications
before displaying the chooser or login interfaces.
There is a script for each display being used,
named Xsetup_*, where * is the local display
number. Typically these scripts run one or two
programs in the background such as xconsole.

xdm-config Global configuration for all displays running on
this machine.

xdm-errors Contains errors generated by the server
program. If a display that XDM is trying to start
hangs, look at this file for error messages. These
messages are also written to the user’s
~/.Xsession-errors on a per-session basis.

xdm-pid The running process ID of XDM.

5.6.2. Configuring Remote Access

By default, only users on the same system can login using XDM. To enable users on other systems to
connect to the display server, edit the access control rules and enable the connection listener.

To configure XDM to listen for any remote connection, comment out the DisplayManager.requestPort
line in /usr/local/etc/X11/xdm/xdm-config by putting a ! in front of it:

160

I SECURITY: do not listen for XDMCP or Chooser requests
I' Comment out this line if you want to manage X terminals with xdm
DisplayManager.requestPort: 0

Save the edits and restart XDM. To restrict remote access, look at the example entries in
Jusr/local/etc/X11/xdm/Xaccess and refer to xdm(8) for further information.

5.7. Desktop Environments

This section describes how to install three popular desktop environments on a FreeBSD system. A
desktop environment can range from a simple window manager to a complete suite of desktop
applications. Over a hundred desktop environments are available in the x11-wm category of the
Ports Collection.

5.7.1. GNOME

GNOME is a user-friendly desktop environment. It includes a panel for starting applications and
displaying status, a desktop, a set of tools and applications, and a set of conventions that make it
easy for applications to cooperate and be consistent with each other. More information regarding
GNOME on FreeBSD can be found at https://www.FreeBSD.org/gnome. That web site contains
additional documentation about installing, configuring, and managing GNOME on FreeBSD.

This desktop environment can be installed from a package:
pkg install gnome

To instead build GNOME from ports, use the following command. GNOME is a large application and
will take some time to compile, even on a fast computer.

cd /usr/ports/x11/gnome
make install clean

GNOME requires /proc to be mounted. Add this line to /etc/fstab to mount this file system
automatically during system startup:

proc /proc procfs rw @0 0

GNOME uses D-Bus for a message bus and hardware abstraction. These applications are
automatically installed as dependencies of GNOME. Enable them in /etc/rc.conf so they will be
started when the system boots:

dbus_enable="YES"

161

https://www.freebsd.org/cgi/man.cgi?query=xdm&sektion=8&format=html
https://www.FreeBSD.org/gnome

After installation, configure Xorg to start GNOME. The easiest way to do this is to enable the GNOME
Display Manager, GDM, which is installed as part of the GNOME package or port. It can be enabled
by adding this line to /etc/rc.conf:

gdm_enable="YES"

It is often desirable to also start all GNOME services. To achieve this, add a second line to
/etc/rc.conf:

gnome_enable="YES"

GDM will start automatically when the system boots.

A second method for starting GNOME is to type startx from the command-line after configuring
~/xinitrc. If this file already exists, replace the line that starts the current window manager with
one that starts /usr/local/bin/gnome-session. If this file does not exist, create it with this command:

% echo "exec /usr/local/bin/gnome-session” > ~/.xinitrc

A third method is to use XDM as the display manager. In this case, create an executable ~/.xsession:

% exec /usr/local/bin/gnome-session ~/ . X i
% echo " /usr/local/bin/ "> ~/.xsession

5.7.2. KDE

KDE is another easy-to-use desktop environment. This desktop provides a suite of applications with
a consistent look and feel, a standardized menu and toolbars, keybindings, color-schemes,
internationalization, and a centralized, dialog-driven desktop configuration. More information on
KDE can be found at http:/www.kde.org/. For FreeBSD-specific information, consult
http://freebsd.kde.org.

To install the KDE package, type:

pkg install x11/kde5

To instead build the KDE port, use the following command. Installing the port will provide a menu
for selecting which components to install. KDE is a large application and will take some time to
compile, even on a fast computer.

cd /usr/ports/x11/kde5
make install clean

KDE requires /proc to be mounted. Add this line to /etc/fstab to mount this file system automatically

162

http://www.kde.org/
http://freebsd.kde.org/

during system startup:

proc /proc procfs rw @0 0

KDE uses D-Bus for a message bus and hardware abstraction. These applications are automatically
installed as dependencies of KDE. Enable them in /etc/rc.conf so they will be started when the
system bhoots:

dbus_enable="YES"

Since KDE Plasma 5, the KDE Display Manager, KDM is no longer developed. A possible replacement
is SDDM. To install it, type:

pkg install x11/sddm

Add this line to /etc/rc.conf:

sddm_enable="YES"

A second method for launching KDE Plasma is to type startx from the command line. For this to
work, the following line is needed in ~/.xinitrc:

exec ck-launch-session startplasma-x11

A third method for starting KDE Plasma is through XDM. To do so, create an executable ~/.xsession
as follows:

% echo "exec ck-launch-session startplasma-x11" > ~/.xsession

Once KDE Plasma is started, refer to its built-in help system for more information on how to use its
various menus and applications.

5.7.3. Xfce

Xfce is a desktop environment based on the GTK+ toolkit used by GNOME. However, it is more
lightweight and provides a simple, efficient, easy-to-use desktop. It is fully configurable, has a main
panel with menus, applets, and application launchers, provides a file manager and sound manager,
and is themeable. Since it is fast, light, and efficient, it is ideal for older or slower machines with
memory limitations. More information on Xfce can be found at http://www.xfce.org.

To install the Xfce package:

163

http://www.xfce.org/

pkg install xfce
Alternatively, to build the port:

cd /usr/ports/x11-wm/xfced
make install clean

Xfce uses D-Bus for a message bus. This application is automatically installed as dependency of
Xfce. Enable it in /etc/rc.conf so it will be started when the system boots:

dbus_enable="YES"

Unlike GNOME or KDE, Xfce does not provide its own login manager. In order to start Xfce from the
command line by typing startx, first create ~/.xinitrc with this command:

% echo ". /usr/local/etc/xdg/xfced/xinitre" > ~/.xinitrc

An alternate method is to use XDM. To configure this method, create an executable ~/.xsession:

%

s echo ". /usr/local/etc/xdg/xfced/xinitrc" > ~/.xsession

5.8. Installing Compiz Fusion

One way to make using a desktop computer more pleasant is with nice 3D effects.

Installing the Compiz Fusion package is easy, but configuring it requires a few steps that are not
described in the port’s documentation.

5.8.1. Setting up the FreeBSD nVidia Driver

Desktop effects can cause quite a load on the graphics card. For an nVidia-based graphics card, the
proprietary driver is required for good performance. Users of other graphics cards can skip this
section and continue with the xorg.conf configuration.

To determine which nVidia driver is needed see the FAQ question on the subject.

Having determined the correct driver to use for your card, installation is as simple as installing any
other package.

For example, to install the latest driver:

pkg install x11/nvidia-driver

164

https://docs.freebsd.org/en/books/faq/#idp59950544

The driver will create a kernel module, which needs to be loaded at system startup. Use sysrc(8) to
load the module at startup:

sysrc kld_list+="nvidia"
Alternatively, add the following line to /boot/loader.conf:

nvidia_load="YES"

To immediately load the kernel module into the running kernel issue a command
like k1dload nvidia. However, it has been noted that some versions of Xorg will not

o function properly if the driver is not loaded at boot time. After editing
/boot/loader.conf, a reboot is recommended. Improper settings in /boot/loader.conf
can cause the system not to boot properly.

With the kernel module loaded, you normally only need to change a single line in xorg.conf to
enable the proprietary driver:

Find the following line in /etc/X11/xorg.conf:

Driver nv
and change it to:
Driver "nvidia"

Start the GUI as usual, and you should be greeted by the nVidia splash. Everything should work as
usual.

5.8.2. Configuring xorg.conf for Desktop Effects
To enable Compiz Fusion, /etc/X11/xorg.conf needs to be modified:

Add the following section to enable composite effects:

Section "Extensions"
Option "Composite" "Enable"
EndSection

Locate the "Screen" section which should look similar to the one below:

165

https://www.freebsd.org/cgi/man.cgi?query=sysrc&sektion=8&format=html

Section "Screen"

Identifier "Screend"
Device "Cardo"
Monitor "Monitor@"

and add the following two lines (after "Monitor" will do):

DefaultDepth 24
Option "AddARGBGLXVisuals" "True"

Locate the "Subsection" that refers to the screen resolution that you wish to use. For example, if you
wish to use 1280x1024, locate the section that follows. If the desired resolution does not appear in
any subsection, you may add the relevant entry by hand:

SubSection "Display”
Viewport 00
Modes "1280x1024"
EndSubSection

A color depth of 24 bits is needed for desktop composition, change the above subsection to:

SubSection "Display”
Viewport 00
Depth 24
Modes "1280x1024"
EndSubSection

Finally, confirm that the "glx" and "extmod" modules are loaded in the "Module" section:

Section "Module"
Load "extmod"
Load "glx"

The preceding can be done automatically with x11/nvidia-xconfig by running (as root):

nvidia-xconfig --add-argb-glx-visuals
nvidia-xconfig --composite
nvidia-xconfig --depth=24

166

https://cgit.freebsd.org/ports/tree/x11/nvidia-xconfig/pkg-descr

5.8.3. Installing and Configuring Compiz Fusion

Installing Compiz Fusion is as simple as any other package:
pkg install x11-wm/compiz-fusion

When the installation is finished, start your graphic desktop and at a terminal, enter the following
commands (as a normal user):

% compiz --replace --sm-disable --ignore-desktop-hints ccp &
% emerald --replace &

Your screen will flicker for a few seconds, as your window manager (e.g., Metacity if you are using
GNOME) is replaced by Compiz Fusion. Emerald takes care of the window decorations (i.e., close,
minimize, maximize buttons, title bars and so on).

You may convert this to a trivial script and have it run at startup automatically (e.g., by adding to
"Sessions" in a GNOME desktop):

#! /bin/sh
compiz --replace --sm-disable --ignore-desktop-hints ccp &
emerald --replace &

Save this in your home directory as, for example, start-compiz and make it executable:
% chmod +x ~/start-compiz

Then use the GUI to add it to Startup Programs (located in System, Preferences, Sessions on a
GNOME desktop).

To actually select all the desired effects and their settings, execute (again as a normal user) the
Compiz Config Settings Manager:

e In GNOME, this can also be found in the System, Preferences menu.

If you have selected "gconf support" during the build, you will also be able to view these settings
using gconf-editor under apps/compiz.

5.9. Troubleshooting

If the mouse does not work, you will need to first configure it before proceeding. In recent Xorg
versions, the InputDevice sections in xorg.conf are ignored in favor of the autodetected devices. To

167

restore the old behavior, add the following line to the ServerlLayout or ServerFlags section of this
file:

Option "AutoAddDevices" "false"

Input devices may then be configured as in previous versions, along with any other options needed

(e.g., keyboard layout switching).

168

ﬁ This section contains partially outdated information. The HAL
daemon (hald) is no longer a part of the FreeBSD desktop setup.

As previously explained the hald daemon will, by default, automatically detect
your keyboard. There are chances that your keyboard layout or model will not be
correct, desktop environments like GNOME, KDE or Xfce provide tools to configure
the keyboard. However, it is possible to set the keyboard properties directly either
with the help of the setxkbmap(1) utility or with a hald’s configuration rule.

For example if, one wants to use a PC 102 keys keyboard coming with a french
layout, we have to create a keyboard configuration file for hald called x11-input.fdi
and saved in the /usr/local/etc/hal/fdi/policy directory. This file should contain the
following lines:

<?xml version="1.0" encoding="utf-8"?>
<deviceinfo version="0.2">
<device>
<match key="info.capabilities" contains="1input.keyboard">
<merge key="1input.x11_options.XkbModel"
type="string">pc102</merge>
<merge key="input.x11_options.XkbLayout" type="string">fr</merge>
</match>
</device>
</deviceinfo>

If this file already exists, just copy and add to your file the lines regarding the
keyboard configuration.

You will have to reboot your machine to force hald to read this file.

It is possible to do the same configuration from an X terminal or a script with this
command line:

% setxkbmap -model pc102 -layout fr

/usr/local/share/X11/xkb/rules/base.lst lists the various keyboard, layouts and
options available.

https://www.freebsd.org/cgi/man.cgi?query=setxkbmap&sektion=1&format=html

The xorg.conf.new configuration file may now be tuned to taste. Open the file in a text editor such
as emacs(l) or ee(1). If the monitor is an older or unusual model that does not support
autodetection of sync frequencies, those settings can be added to xorg.conf.new under the "Monitor"
section:

Section "Monitor"
Identifier "Monitor@"
VendorName "Monitor Vendor"
Mode1Name "Monitor Model"
HorizSync 30-107
VertRefresh 48-120
EndSection

Most monitors support sync frequency autodetection, making manual entry of these values
unnecessary. For the few monitors that do not support autodetection, avoid potential damage by
only entering values provided by the manufacturer.

X allows DPMS (Energy Star) features to be used with capable monitors. The xset(1) program
controls the time-outs and can force standby, suspend, or off modes. If you wish to enable DPMS
features for your monitor, you must add the following line to the monitor section:

Option "DPMS"

While the xorg.conf.new configuration file is still open in an editor, select the default resolution and
color depth desired. This is defined in the "Screen" section:

Section "Screen"
Identifier "Screen@"
Device "Cardo"
Monitor "Monitor@"
DefaultDepth 24
SubSection "Display"

Viewport 0 0

Depth 24
Modes "1024x768"
EndSubSection
EndSection

The DefaultDepth keyword describes the color depth to run at by default. This can be overridden
with the -depth command line switch to Xorg(1). The Modes keyword describes the resolution to run
at for the given color depth. Note that only VESA standard modes are supported as defined by the
target system’s graphics hardware. In the example above, the default color depth is twenty-four bits
per pixel. At this color depth, the accepted resolution is 1024 by 768 pixels.

Finally, write the configuration file and test it using the test mode given above.

169

https://www.freebsd.org/cgi/man.cgi?query=emacs&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ee&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=xset&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=Xorg&sektion=1&format=html

One of the tools available to assist you during troubleshooting process are the Xorg

o log files, which contain information on each device that the Xorg server attaches
to. Xorg log file names are in the format of /var/log/Xorg.0.log. The exact name of
the log can vary from Xorg.0.log to Xorg.8.1og and so forth.

If all is well, the configuration file needs to be installed in a common location where Xorg(1) can
find it. This is typically /etc/X11/xorg.conf or /usr/local/etc/X11/xorg.conf.

cp xorg.conf.new /etc/X11/xorg.conf

The Xorg configuration process is now complete. Xorg may be now started with the startx(1) utility.
The Xorg server may also be started with the use of xdm(8).

5.9.1. Configuration with Intel® 1810 Graphics Chipsets

Configuration with Intel® i810 integrated chipsets requires the agpgart AGP programming interface
for Xorg to drive the card. See the agp(4) driver manual page for more information.

This will allow configuration of the hardware as any other graphics board. Note on systems without
the agp(4) driver compiled in the kernel, trying to load the module with kldload(8) will not work.
This driver has to be in the kernel at boot time through being compiled in or using
/boot/loader.conf.

5.9.2. Adding a Widescreen Flatpanel to the Mix

This section assumes a bit of advanced configuration knowledge. If attempts to use the standard
configuration tools above have not resulted in a working configuration, there is information
enough in the log files to be of use in getting the setup working. Use of a text editor will be
necessary.

Current widescreen (WSXGA, WSXGA+, WUXGA, WXGA, WXGA+, et.al.) formats support 16:10 and
10:9 formats or aspect ratios that can be problematic. Examples of some common screen
resolutions for 16:10 aspect ratios are:

* 2560x1600

1920x1200

1680x1050

1440x900

1280x800

At some point, it will be as easy as adding one of these resolutions as a possible Mode in the Section
"Screen” as such:

170

https://www.freebsd.org/cgi/man.cgi?query=Xorg&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=startx&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=xdm&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=agp&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=agp&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=kldload&sektion=8&format=html

Section "Screen"
Identifier "Screen@"
Device "Cardo"
Monitor "Monitor@"
DefaultDepth 24
SubSection "Display"
Viewport 0 0

Depth 24

Modes "1680x1050"
EndSubSection
EndSection

Xorg is smart enough to pull the resolution information from the widescreen via 12C/DDC
information so it knows what the monitor can handle as far as frequencies and resolutions.

If those ModeLines do not exist in the drivers, one might need to give Xorg a little hint. Using
/var/log/Xorg.0.log one can extract enough information to manually create a ModelLine that will
work. Simply look for information resembling this:

(IT) MGA(@): Supported additional Video Mode:

(IT) MGA(@): clock: 146.2 MHz Image Size: 433 x 271 mm

(IT) MGA(@): h_active: 1680 h_sync: 1784 h_sync_end 1960 h_blank_end 2240 h_border:
0

(IT) MGA(@): v_active: 1050 v_sync: 1053 v_sync_end 1059 v_blanking: 1089 v_border:
0

(IT) MGA(@): Ranges: V min: 48 V max: 85 Hz, H min: 30 H max: 94 kHz, PixClock max
170 MHz

This information is called EDID information. Creating a ModeLine from this is just a matter of putting
the numbers in the correct order:

ModeLine <name> <clock> <4 horiz. timings> <4 vert. timings>

So that the ModeLine in Section "Monitor" for this example would look like this:

Section "Monitor"

Identifier "Monitor1"

VendorName "Bigname"

Mode1Name "BestModel"

Modeline "1680x1050" 146.2 1680 1784 1960 2240 1050 1053 1059 1089
Option "DPMS"

EndSection

Now having completed these simple editing steps, X should start on your new widescreen monitor.

171

5.9.3. Troubleshooting Compiz Fusion

5.9.3.1. I have installed Compiz Fusion, and after running the commands you mention, my
windows are left without title bars and buttons. What is wrong?

You are probably missing a setting in /etc/X11/xorg.conf. Review this file carefully and check
especially the DefaultDepth and AddARGBGLXVisuals directives.

5.9.3.2. When I run the command to start Compiz Fusion, the X server crashes and I am back
at the console. What is wrong?

If you check /var/log/Xorg.0.log, you will probably find error messages during the X startup. The
most common would be:

(EE) NVIDIA(Q): Failed to initialize the GLX module; please check in your X
(EE) NVIDIA(Q): log file that the GLX module has been loaded in your X

(EE) NVIDIA(Q): server, and that the module is the NVIDIA GLX module. If
(EE) NVIDIA(Q): you continue to encounter problems, Please try

(EE) NVIDIA(Q): reinstalling the NVIDIA driver.

This is usually the case when you upgrade Xorg. You will need to reinstall the x11/nvidia-driver
package so glx is built again.

5.10. Wayland on FreeBSD

Wayland is a new software for supporting graphical user interfaces, but it differs from Xorg in
several important ways. First, Wayland is only a protocol that acts as an intermediary between
clients using a different mechanism which removes the dependency on an X server. Xorg includes
both the X11 protocol, used to run remote displays and the X server will accept connections and
display windows. Under Wayland, the compositor or window manager provides the display server
instead of a traditional X server.

Since Wayland is not an X server, traditional X screen connections will need to utilize other
methods such as VNC or RDP for remote desktop management. Second, Wayland can manage
composite communications between clients and a compositor as a separate entity which does not
need to support the X protocols.

Wayland is relatively new, and not all software has been updated to run natively without Xwayland
support. Because Wayland does not provide the X server, and expects compositors to provide that
support, X11 window managers that do not yet support Wayland will require that Xwayland is not
started with the -rootless parameter. The -rootless parameter, when removed, will restore X11
window manager support.

The current NVidia driver should work with most wl-roots compositors, but it may
o be a little unstable and not support all features at this time. Volunteers to help
work on the NVidia DRM are requested.

Currently, a lot of software will function with minimal issues on Wayland, including Firefox. And a

172

https://cgit.freebsd.org/ports/tree/x11/nvidia-driver/pkg-descr

few desktops are also available, such as the Compiz Fusion replacement, known as Wayfire, and the
i3 window manager replacement, Sway.

As of May, 2021, plasma5-kwin does support Wayland on FreeBSD. To use Plasma

o under Wayland, use the startplasma-wayland parameter to ck-launch-session and
tie in dbus with: ck-launch-session dbus-run-session startplasma-wayland to get it
working.

For compositors, a kernel supporting the evdev(4) driver must exist to utilize the keybinding
functionality. This is built into the GENERIC kernel by default; however, if it has been customized
and evdev(4) support was stripped out, the evdev(4) module will need to be loaded. In addition,
users of Wayland will need to be members of the video group. To quickly make this change, use the pw
command:

pw groupmod video -m user

Installing Wayland is simple; there is not a great deal of configuration for the protocol itself. Most of
the composition will depend on the chosen compositor. By installing seatd now, a step is skipped as
part of the compositor installation and configuration as seatd is needed to provide non-root access
to certain devices. All of the compositors described here should work with graphics/drm-kmod
open source drivers; however, the NVidia graphics cards may have issues when using the
proprietary drivers. Begin by installing the following packages:

pkg install wayland seatd

Once the protocol and supporting packages have been installed, a compositor must create the user
interface. Several compositors will be covered in the following sections. All compositors using
Wayland will need a runtime directory defined in the environment, which can be achieved with the
following command in the bourne shell:

% export XDG_RUNTIME_DIR=/var/run/user/‘id -u'

It is important to note that most compositors will search the XDG_RUNTIME_DIR directory for the
configuration files. In the examples included here, a parameter will be used to specify a
configuration file in ~/.config to keep temporary files and configuration files separate. It is
recommended that an alias be configured for each compositor to load the designated configuration
file.

173

https://www.freebsd.org/cgi/man.cgi?query=evdev&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=evdev&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=evdev&sektion=4&format=html
https://cgit.freebsd.org/ports/tree/graphics/drm-kmod/pkg-descr

It has been reported that ZFS users may experience issues with some Wayland
clients because they need access to posix_fallocate() in the runtime directory.
While the author could not reproduce this issue on their ZFS system, a
recommended workaround is not to use ZFS for the runtime directory and instead

A use tmpfs for the /var/run directory. In this case, the tmpfs file system is used for
/var/run and mounted through the command mount -t tmpfs tmpfs /var/run
command and then make this change persist across reboots through /etc/fstab. The
XDG_RUNTIME_DIR environment variable could be configured to wuse
/var/run/user/$UID and avoid potential pitfalls with ZFS. Consider that scenario
when reviewing the configuration examples in the following sections.

The seatd daemon helps manage access to shared system devices for non-root users in compositors;
this includes graphics cards. For traditional X11 managers, seatd is not needed, such as both Plasma
and GNOME, but for the Wayland compositors discussed here, it will need enabled on the system
and be running before starting a compositor environment. To enable and start the seatd daemon
now, and on system initialization:

sysrc seatd_enable="YES"
service seatd start

Afterward, a compositor, which is similar to an X11 desktop, will need to be installed for the GUI
environment. Three are discussed here, including basic configuration options, setting up a screen
lock, and recommendations for more information.

5.10.1. The Wayfire Compositor

Wayfire is a compositor that aims to be lightweight and customizable. Several features are
available, and it brings back several elements from the previously released Compiz Fusion desktop.
All of the parts look beautiful on modern hardware. To get Wayfire up and running, begin by
installing the required packages:

pkg install wayfire wf-shell alacritty swaylock-effects swayidle wlogout kanshi mako
wlsunset

The alacritty package provides a terminal emulator. Still, it is not completely required as other
terminal emulators such as kitty, and XFCE-4 Terminal have been tested and verified to work under
the Wayfire compositor. Wayfire configuration is relatively simple; it uses a file that should be
reviewed for any customizations. To begin, copy the example file over to the runtime environment
configuration directory and then edit the file:

% mkdir ~/.config/wayfire
% cp /usr/local/share/examples/wayfire/wayfire.ini ~/.config/wayfire

The defaults for most users should be fine. Within the configuration file, items like the famous cube
are pre-configured, and there are instructions to help with the available settings. A few primary

174

settings of note include:

[output]

mode = 1920x1080@60000
position = 0,0
transform = normal
scale = 1.000000

In this example, from the configuration file, the screen’s output should be the listed mode at the
listed hertz. For example, the mode should be set to widthxheight@refresh_rate. The position places
the output at a specific pixel location specified. The default should be fine for most users. Finally,
transform sets a background transform, and scale will scale the output to the specified scale factor.
The defaults for these options are generally acceptable; for more information, see the
documentation.

As mentioned, Wayland is new, and not all applications work with the protocol yet. At this time,
sddm does not appear to support starting and managing compositors in Wayland. The swaylock
utility has been used instead in these examples. The configuration file contains options to run
swayidle and swaylock for idle and locking of the screen. This option to define the action to take
when the system is idle is listed as:

idle = swaylock

And the lock timeout is configured using the following lines:

[idle]

toggle = <super> KEY_Z
screensaver_timeout = 300
dpms_timeout = 600

The first option will lock the screen after 300 seconds, and after another 300, the screen will shut
off through the dpms_timeout option.

One final thing to note is the <super> key. Most of the configuration mentions this key, and it is the
traditional Windows key on the keyboard. Most keyboards have this super key available; however, it
should be remapped within this configuration file if it is not available. For example, to lock the
screen, press and hold the super key, the shift key, and press the escape key. nless the mappings
have changed, this will execute the swaylock application. The default configuration for swaylock
will show a grey screen; however, the application is highly customizable and well documented. In
addition, since the swaylock-effects is the version that was installed, there are several options
available such as the blur effect, which can be seen using the following command:

% swaylock --effect-blur 7x5

There is also the --clock parameter which will display a clock with the date and time on the lock

175

screen. When x11/swaylock-effects was installed, a default pam.d configuration was included. It
provides the default options that should be fine for most users. More advanced options are
available; see the PAM documentation for more information.

At this point, it is time to test Wayfire and see if it can start up on the system. Just type the following
command:

% wayfire -c¢ ~/.config/wayfire/wayfire.ini

The compositor should now start and display a background image along with a menu bar at the top
of the screen. Wayfire will attempt to list installed compatible applications for the desktop and
present them in this drop-down menu; for example, if the XFCE-4 file manager is installed, it will
show up in this drop-down menu. If a specific application is compatible and valuable enough for a
keyboard shortcut, it may be mapped to a keyboard sequence using the wayfire.ini configuration
file. Wayfire also has a configuration tool named Wayfire Config Manager. It is located in the drop-
down menu bar but may also be started through a terminal by issuing the following command:

% wem

Various Wayfire configuration options, including the composite special effects, maybe enabled,
disabled, or configured through this application. In addition, for a more user-friendly experience, a
background manager, panel, and docking application may be enabled in the configuration file:

panel = wf-panel
dock = wf-dock
background = wf-background

Changes made through wem will overwrite custom changes in the wayfire.ini
A configuration file. The wayfire.ini file is highly recommended to be backed up so
any essential changes may be restored.

Finally, the default launcher listed in the wayfire.ini is x11/wf-shell which may be replaced with
other panels if desired by the user.

5.10.2. The Hikari Compositor

The Hikari compositor uses several concepts centered around productivity, such as sheets,
workspaces, and more. In that way, it resembles a tiling window manager. Breaking this down, the
compositor starts with a single workspace, which is similar to virtual desktops. Hikari uses a single
workspace or virtual desktop for user interaction. The workspace is made up of several views,
which are the working windows in the compositor grouped as either sheets or groups. Both sheets
and groups are made up of a collection of views; again, the windows that are grouped together.
When switching between sheets or groups, the active sheet or group will become known
collectively as the workspace. The manual page will break this down into more information on the
functions of each but for this document, just consider a single workspace utilizing a single sheet.

176

https://cgit.freebsd.org/ports/tree/x11/swaylock-effects/pkg-descr
https://cgit.freebsd.org/ports/tree/x11/wf-shell/pkg-descr

Hikari installation will comprise of a single package, x11-wm/hikari, and a terminal emulator
alacritty:

pkg install hikari alacritty

Other shells, such as kitty or the Plasma Terminal, will function under Wayland.
o Users should experiment with their favorite terminal editor to validate
compatibility.

Hikari uses a configuration file, hikari.conf, which could either be placed in the XDG_RUNTIME_DIR
or specified on startup using the -c parameter. An autostart configuration file is not required but
may make the migration to this compositor a little easier. Beginning the configuration is to create
the Hikari configuration directory and copy over the configuration file for editing:

% mkdir ~/.config/hikari
% cp /usr/local/etc/hikari/hikari.conf ~/.config/hikari

The configuration is broken out into various stanzas such as ui, outputs, layouts, and more. For
most users, the defaults will function fine; however, some important changes should be made. For
example, the $TERMINAL variable is normally not set within the user’s environment. Changing this
variable or altering the hikari.conf file to read:

terminal = "/usr/local/bin/alacritty"

Will launch the alacritty terminal using the bound key press. While going through the
configuration file, it should be noted that the capital letters are used to map keys out for the user.
For example, the L key for starting the terminal L + Return is actually the previously discussed super
key or Windows logo key. Therefore, holding the L/super/Windows key and pressing Enter will open
the specified terminal emulator with the default configuration. Mapping other keys to applications
require an action definition to be created. For this, the action item should be listed in the actions
stanza, for example:

actions {
terminal = "/usr/local/bin/alacritty"”
browser = "/usr/local/bin/firefox"

Then an action may be mapped under the keyboard stanza, which is defined within the bindings
stanza:

177

https://cgit.freebsd.org/ports/tree/x11-wm/hikari/pkg-descr

bindings {
keyboard {
SNIP
"L+Return" = action-terminal
"L+b" = action-browser
SNIP

After Hikari is restarted, holding the Windows logo button and pressing the b key on the keyboard
will start the web browser. The compositor does not have a menu bar, and it is recommended the
user set up, at minimal, a terminal emulator before migration. The manual page contains a great
deal of documentation it should be read before performing a full migration. Another positive aspect
about Hikari is that, while migrating to the compositor, Hikari can be started in the Plasma and
GNOME desktop environments, allowing for a test-drive before completely migrating.

Locking the screen in Hikari is easy because a default pam.d configuration file and unlock utility
are bundled with the package. The key binding for locking the screen is L (Windows logo key)+
Shift + Backspace. It should be noted that all views not marked public will be hidden. These views
will never accept input when locked but beware of sensitive information being visible. For some
users, it may be easier to migrate to a different screen locking utility such as swaylock-effects,
discussed in this section. To start Hikari, use the following command:

% hikari -c¢ ~/.config/hikari/hikari.conf

5.10.3. The Sway Compositor

The Sway compositor is a tiling compositor that attempts to replace the i3 windows manager. It
should work with the user’s current i3 configuration; however, new features may require some
additional setup. In the forthcoming examples, a fresh installation without migrating any i3
configuration will be assumed. To install Sway and valuable components, issue the following
command as the root user:

pkg install sway swayidle swaylock-effects alacritty dmenu-wayland dmenu

For a basic configuration file, issue the following commands and then edit the configuration file
after it is copied:

% mkdir ~/.config/sway
% cp /usr/local/etc/sway/config ~/.config/sway

The base configuration file has many defaults, which will be fine for most users. Several important
changes should be made like the following:

178

Logo key. Use Mod1 for Alt.
input * xkb_rules evdev
set $mod Mod4
Your preferred terminal emulator
set $term alacritty
set $lock swaylock -f -c 000000
output "My Workstation" mode 1366x786@60Hz position 1366 0
output * bg ~/wallpapers/mywallpaper.png stretch
Idle confiquration
exec swayidle -w \
timeout 300 'swaylock -f -c 000000' \
timeout 600 'swaymsg "output * dpms off"' resume 'swaymsg "output * dpms
on"" \
before-sleep 'swaylock -f -c 000000'

In the previous example, the xkb rules for evdev(4) events are loaded, and the $mod Kkey is set to the
Windows logo key for the key bindings. Next, the terminal emulator was set to be alacritty, and a
screen lock command was defined; more on this later. The output keyword, the mode, the position,
a background wallpaper, and Sway is also told to stretch this wallpaper to fill out the screen.
Finally, swaylock is set to daemonize and lock the screen after a timeout of 300 seconds, placing the
screen or monitor into sleep mode after 600 seconds. The locked background color of 000000, which
is black, is also defined here. Using swaylock-effects, a clock may also be displayed with the --clock
parameter. See the manual page for more options. The sway-output(5) manual page should also be
reviewed; it includes a great deal of information on customing the output options available.

While in Sway, to bring up a menu of applications, hold the Windows logo key (mod) and press the d
key. The menu may be navigated using the arrow keys on the keyboard. There is also a method to
manipulate the layout of the bar and add a tray; read the sway-bar(5) manual page for more
information. The default configuration adds a date and time to the upper right-hand corner. See the
Bar stanza in the configuration file for an example. By default, the configuration does not include
locking the screen outside of the example above, enabling a lockout timer. Creating a lock key
binding requires the following line to the Key bindings section:

Lock the screen manually
bindsym $mod+Shift+Return exec $lock

Now the screen may be locked using the combination of holding the Windows logo key, pressing
and holding shift, and finally pressing return. When Sway is installed, whether from a package or
the FreeBSD Ports Collection, a default file for pam.d was installed. The default configuration
should be acceptable for most users, but more advanced options are available. Read through the
PAM documentation for more information.

Finally, to exit Sway and return to the shell, hold the Windows logo key, the shift key, and press the
e key. A prompt will be displayed with an option to exit Sway. During migration, Sway can be
started through a terminal emulator on an X11 desktop such as Plasma. This makes testing different
changes and key bindings a little easier prior to fully migrating to this compositor. To start Sway,
issue the following command:

179

https://www.freebsd.org/cgi/man.cgi?query=evdev&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=sway-output&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=sway-bar&sektion=5&format=html

% sway -c ~/.config/sway/config

5.10.4. Using Xwayland

When installing Wayland, the Xwayland binary should have been installed unless Wayland was built
without X11 support. If the /usr/local/bin/Xwayland file does not exist, install it using the following
command:

pkg install xwayland-devel

The development version of Xwayland is recommended and was most likely
o installed with the Wayland package. Each compositor has a method of enabling or
disabling this feature.

Once Xwayland has been installed, configure it within the chosen compositor. For Wayfire, the
following line is required in the wayfire.ini file:

xwayland = true

For the Sway compositor, Xwayland should be enabled by default. Even so, it is recommened to
manually add a configuration line in the ~/.config/sway/config like the following:

xwayland enable

Finally, for Hikari, no changes are needed. Support for Xwayland is build in by default. To disable
that support, rebuild the package from the ports collection and disable Xwayland support at that
time.

After these changes are made, start the compositor at the command line and execute a terminal
from the key bindings. Within this terminal, issue the env command and search for the DISPLAY
variables. If the compositor was able to properly start the Xwayland X server, these environment
variables should look similar to the following:

% env | grep DISPLAY

WAYLAND_DISPLAY=wayland-1
DISPLAY=:0

In this output, there is a default Wayland display and a display set for the Xwayland server. Another
method to verify that Xwayland is functioning properly is to use install and test the small
package:[x11/eyes] and check the output. If the xeyes application starts and the eyes follow the
mouse pointer, Xwayland is functioning properly. If an error such as the following is displayed,

180

something happened during the Xwayland intitialization and it may need reinstalled:

Error: Cannot open display wayland-0

A security feature of Wayland is that, without running an X server, there is not
another network listener. Once Xwayland is enabled, this security feature is no
longer applicable to the system.

For some compositors, such as Wayfire, Xwayland may not start properly. As such, env will show the
following information for the DISPLAY environment variables:

% env | grep DISPLAY

DISPLAY=wayland-1
WAYLAND_DISPLAY=wayland-1

Even though Xwayfire was installed and configured, X11 applications will not start giving a display
issue. To work around this, verify that there is already an instance of Xwayland using a UNIX socket
through these two methods. First, check the output from sockstat and search for X11-unix:

% sockstat | grep x11

There should be something similar to the following information:

trhodes Xwayland 2734 8 stream /tmp/.X11-unix/X0
trhodes Xwayland 2734 9 stream /tmp/.X11-unix/X0
trhodes Xwayland 2734 10 stream /tmp/.X11-unix/X0
trhodes Xwayland 2734 27 stream /tmp/.X11-unix/X0_
trhodes Xwayland 2734 28 stream /tmp/.X11-unix/X0

This suggests the existence of an X11 socket. This can be further verified by attempting to execute
Xwayland manually within a terminal emulator running under the compositor:

% Xwayland

If an X11 socket is already available, the following error should be presented to the user:

181

(EE)

Fatal server error:

(EE) Server 1is already active for display @
If this server is no longer running, remove /tmp/.X@-lock
and start again.

(EE)

Since there is an active X display available using display zero, the environment variable was just set
improperly, to fix this, change the DISPLAY environment variable to :0 and attempt to execute the
application again. The following example uses mail/claws-mail as the application which needs the
Xwayland service:

export DISPLAY=:0

After this change, the mail/claws-mail application should now start using Xwayland and function as
expected.

5.10.5. Remote Desktop Using VNC

Earlier in this document it was noted that Wayland does not provide the same X server style access
as Xorg provides. Instead, users are free to pick and choose a remote desktop protocol such as RDP
or VNC. The FreeBSD Ports collection includes the wayvnc, which will support wlroots based
compositors such as the ones discussed here. This application may be installed using:

pkg install wayvnc

Unlike some other packages, wayvnc does not come with a configuration file. Thankfully, the manual
page documents the important options and they may be extrapolated into a simple configuration
file:

address=0.0.0.0

enable_auth=true

username=username
password=password
private_key_file=/path/to/key.pem
certificate_file=/path/to/cert.pem

The key files will need to be generated, and it is highly recommended they be used for increased
security of the connection. When invoked, wayvnc will search for the configuration file in
~/.config/wayvnc/config. This could be overwritten using the -C configuration_file option when
starting the server. Thus, to start the wayvnc server, issue the following command:

% wayvnc -C ~/.config/wayvnc/config

182

https://cgit.freebsd.org/ports/tree/mail/claws-mail/pkg-descr
https://cgit.freebsd.org/ports/tree/mail/claws-mail/pkg-descr

At the time of this writing, there is no rc.d script to start wayvnc on system
o initialization. If that functionality is desired, a local startup file will need to be
created. This is probably a feature request for the port maintainer.

5.10.6. Wayland Login Manager

While several login managers exist and are slowly migrating to Wayland, one option is the x11/ly
text user interface (TUI) manager. Needing minimal configuration, 1y will start Sway, Wayfire, and
others by presenting a login window on system initialization. To install 1y, issue the following
command:

pkg install ly

There will be some configuration hints presented, the import steps are to add the following lines to
/etc/gettytab:

Ly:\
:lo=/usr/local/bin/1ly:\
:al=root:

And then modify the ttyv1 line in /etc/ttys to match the following line:
ttyvl "/usr/libexec/getty Ly" xterm onifexists secure

After a system reboot, a login should appear. To configure specific settings, such as language and
edit /usr/local/etc/ly/config.ini. At minimal, this file should have the designated tty that was
previously specified in /etc/ttys.

o If setting ttyvO0 up as the login terminal, it may be required to press the alt and F1
keys to properly see the login window.

When the login window appears, using the left and right arrows will swap through different,
supported, window managers.

5.10.7. Useful Utilities

One useful Wayland utility which all compositors can make use of is the waybar. While Wayfire
does come with a launch menu, an easy-to-use and fast taskbar is a good accessory for any
compositor or desktop manager. A Wayland compatible taskbar that is fast and easy to configure is
waybar. To install the package and a supporting audio control utility, issue the following command:

pkg install pavucontrol waybar

To create the configuration directory and copy over a default configuration file, execute the

183

https://cgit.freebsd.org/ports/tree/x11/ly/pkg-descr

following commands:

% mkdir ~/.config/waybar
% cp /usr/local/etc/xdg/waybar/config ~/.config/waybar

The lavalauncher utility provides a launch bar for various applications. There is no example
configuration file provided with the package, so the following actions must be taken:

mkdir ~/.config/lavalauncher

An example configuration file that only includes Firefox, and is placed on the right, is below:

global-settings {

watch-config-file = true;
}
bar {
output = eDP-1;
position = bottom;
background-colour = "#202020";
Condition for the default configuration set.
condition-resolution = wider-than-high;
config {
position = right;
}
button {
image-path =
/usr/local/lib/firefox/browser/chrome/icons/default/default48.png;
command[mouse-left] = /usr/local/bin/firefox;
}
button {
image-path = /usr/local/share/pixmaps/thunderbird.png;
command[mouse-left] = /usr/local/bin/thunderbird;
}

184

Part II: Common Tasks

Now that the basics have been covered, this part of the book discusses some frequently used
features of FreeBSD. These chapters:

* Introduce popular and useful desktop applications: browsers, productivity tools, document
viewers, and more.

e Introduce a number of multimedia tools available for FreeBSD.

Explain the process of building a customized FreeBSD kernel to enable extra functionality.

Describe the print system in detail, both for desktop and network-connected printer setups.

* Show how to run Linux applications on the FreeBSD system.

Some of these chapters recommend prior reading, and this is noted in the synopsis at the beginning
of each chapter.

185

Chapter 6. Desktop Applications

6.1. Synopsis

While FreeBSD is popular as a server for its performance and stability, it is also suited for day-to-
day use as a desktop. With over 36000 applications available as FreeBSD packages or ports, it is easy
to build a customized desktop that runs a wide variety of desktop applications. This chapter
demonstrates how to install numerous desktop applications, including web browsers, productivity
software, document viewers, and financial software.

Users who prefer to install a pre-built desktop version of FreeBSD rather than
o configuring one from scratch should refer to GhostBSD, MidnightBSD or
NomadBSD.

Readers of this chapter should know how to:

 Install additional software using packages or ports as described in Installing Applications:
Packages and Ports.

* Install X and a window manager as described in The X Window System.

For information on how to configure a multimedia environment, refer to Multimedia.

6.2. Browsers

FreeBSD does not come with a pre-installed web browser. Instead, the www category of the Ports
Collection contains many browsers which can be installed as a package or compiled from the Ports
Collection.

The KDE and GNOME desktop environments include their own HTML browser. Refer to “Desktop
Environments” for more information on how to set up these complete desktops.

Some lightweight browsers include wwwy/dillo2, wwwy/links, and www/w3m.

This section demonstrates how to install the following popular web browsers and indicates if the
application is resource-heavy, takes time to compile from ports, or has any major dependencies.

Application Name Resources Needed Installation from Notes
Ports
Firefox medium heavy FreeBSD, Linux®, and
localized versions are
available
Konqueror medium heavy Requires KDE libraries
Chromium medium heavy Requires Gtk+

186

https://ghostbsd.org
https://www.midnightbsd.org
https://nomadbsd.org
../ports/index.html#ports
../ports/index.html#ports
../x11/index.html#x11
../multimedia/index.html#multimedia
https://www.FreeBSD.org/ports/
../x11/index.html#x11-wm
../x11/index.html#x11-wm
https://cgit.freebsd.org/ports/tree/www/dillo2/pkg-descr
https://cgit.freebsd.org/ports/tree/www/links/pkg-descr
https://cgit.freebsd.org/ports/tree/www/w3m/pkg-descr

6.2.1. Firefox

Firefox is an open source browser that features a standards-compliant HTML display engine,
tabbed browsing, popup blocking, extensions, improved security, and more. Firefox is based on the
Mozilla codebase.

To install the package of the latest release version of Firefox, type:

pkg install firefox

To instead install Firefox Extended Support Release (ESR) version, use:

pkg install firefox-esr

The Ports Collection can instead be used to compile the desired version of Firefox from source code.
This example builds www/firefox, where firefox can be replaced with the ESR or localized version
to install.

cd /usr/ports/www/firefox
make install clean

6.2.2. Konqueror

Konqueror is more than a web browser as it is also a file manager and a multimedia viewer.
Supports WebKit as well as its own KHTML. WebKit is a rendering engine used by many modern
browsers including Chromium.

Konqueror can be installed as a package by typing:

pkg install konqueror

To install from the Ports Collection:

cd /usr/ports/x11-fm/konqueror/
make install clean

6.2.3. Chromium

Chromium is an open source browser project that aims to build a safer, faster, and more stable web
browsing experience. Chromium features tabbed browsing, popup blocking, extensions, and much
more. Chromium is the open source project upon which the Google Chrome web browser is based.

Chromium can be installed as a package by typing:

187

https://cgit.freebsd.org/ports/tree/www/firefox/pkg-descr

pkg install chromium
Alternatively, Chromium can be compiled from source using the Ports Collection:

cd /usr/ports/www/chromium
make install clean

o The executable for Chromium is Jusr/local/bin/chrome, not
Jusr/local/bin/chromium.

6.3. Productivity

When it comes to productivity, users often look for an office suite or an easy-to-use word processor.
While some desktop environments like KDE provide an office suite, there is no default productivity
package. Several office suites and graphical word processors are available for FreeBSD, regardless
of the installed window manager.

This section demonstrates how to install the following popular productivity software and indicates
if the application is resource-heavy, takes time to compile from ports, or has any major
dependencies.

Application Name Resources Needed Installation from Major Dependencies
Ports

Calligra light heavy KDE

AbiWord light light Gtk+ or GNOME

The Gimp light heavy Gtk+

Apache OpenOffice heavy huge JDK™ and Mozilla

LibreOffice somewhat heavy huge Gtk+, or KDE/ GNOME,

or JDK™

6.3.1. Calligra

The KDE desktop environment includes an office suite which can be installed separately from KDE.
Calligra includes standard components that can be found in other office suites. Words is the word
processor, Sheets is the spreadsheet program, Stage manages slide presentations, and Karbon is
used to draw graphical documents.

In FreeBSD, editors/calligra can be installed as a package or a port. To install the package:
pkg install calligra

If the package is not available, use the Ports Collection instead:

188

https://cgit.freebsd.org/ports/tree/editors/calligra/pkg-descr

cd /usr/ports/editors/calligra
make install clean

6.3.2. AbiWord

AbiWord is a free word processing program similar in look and feel to Microsoft® Word. It is fast,
contains many features, and is user-friendly.

AbiWord can import or export many file formats, including some proprietary ones like Microsoft®
rtf.

To install the AbiWord package:
pkg install abiword
If the package is not available, it can be compiled from the Ports Collection:

cd /usr/ports/editors/abiword
make install clean

6.3.3. The GIMP

For image authoring or picture retouching, The GIMP provides a sophisticated image manipulation
program. It can be used as a simple paint program or as a quality photo retouching suite. It
supports a large number of plugins and features a scripting interface. The GIMP can read and write
a wide range of file formats and supports interfaces with scanners and tablets.

To install the package:
pkg install gimp
Alternately, use the Ports Collection:

cd /usr/ports/graphics/gimp
make install clean

The graphics category (freebsd.org/ports/graphics/) of the Ports Collection contains several GIMP-
related plugins, help files, and user manuals.

6.3.4. Apache OpenOffice

Apache OpenOffice is an open source office suite which is developed under the wing of the Apache
Software Foundation’s Incubator. It includes all of the applications found in a complete office
productivity suite: a word processor, spreadsheet, presentation manager, and drawing program. Its

189

https://www.FreeBSD.org/ports/graphics/

user interface is similar to other office suites, and it can import and export in various popular file
formats. It is available in a number of different languages and internationalization has been
extended to interfaces, spell checkers, and dictionaries.

The word processor of Apache OpenOffice uses a native XML file format for increased portability
and flexibility. The spreadsheet program features a macro language which can be interfaced with
external databases. Apache OpenOffice is stable and runs natively on Windows®, Solaris™, Linux®,
FreeBSD, and Mac OS® X. More information about Apache OpenOffice can be found at
openoffice.org. For FreeBSD specific information refer to porting.openoffice.org/freebsd;.

To install the Apache OpenOffice package:
pkg install apache-openoffice

Once the package is installed, type the following command to launch Apache OpenOffice:
% openoffice-X.Y.Z

where X.Y.Z is the version number of the installed version of Apache OpenOffice. The first time
Apache OpenOffice launches, some questions will be asked and a .openoffice.org folder will be
created in the user’s home directory.

If the desired Apache OpenOffice package is not available, compiling the port is still an option.
However, this requires a lot of disk space and a fairly long time to compile:

cd /usr/ports/editors/openoffice-4
make install clean

To build a localized version, replace the previous command with:

make LOCALIZED_LANG=your_language install clean

Replace your_language with the correct language ISO-code. A list of supported
language codes is available in files/Makefile.localized, located in the port’s
directory.

6.3.5. LibreOffice

LibreOffice is a free software office suite developed by documentfoundation.org. It is compatible
with other major office suites and available on a variety of platforms. It is a rebranded fork of
Apache OpenOffice and includes applications found in a complete office productivity suite: a word
processor, spreadsheet, presentation manager, drawing program, database management program,
and a tool for creating and editing mathematical formulee. It is available in a number of different
languages and internationalization has been extended to interfaces, spell checkers, and
dictionaries.

190

http://openoffice.org/
http://porting.openoffice.org/freebsd/
http://www.documentfoundation.org/

The word processor of LibreOffice uses a native XML file format for increased portability and
flexibility. The spreadsheet program features a macro language which can be interfaced with
external databases. LibreOffice is stable and runs natively on Windows®, Linux®, FreeBSD, and
Mac OS® X. More information about LibreOffice can be found at libreoffice.org.

To install the English version of the LibreOffice package:
pkg install libreoffice

The editors category (freebsd.org/ports/editors/) of the Ports Collection contains several
localizations for LibreOffice. When installing a localized package, replace libreoffice with the
name of the localized package.

Once the package is installed, type the following command to run LibreOffice:
% libreoffice

During the first launch, some questions will be asked and a .libreoffice folder will be created in the
user’s home directory.

If the desired LibreOffice package is not available, compiling the port is still an option. However,
this requires a lot of disk space and a fairly long time to compile. This example compiles the English
version:

cd /usr/ports/editors/libreoffice
make install clean

To build a localized version, cd into the port directory of the desired language.
Supported languages can be found in the editors category
(freebsd.org/ports/editors/) of the Ports Collection.

6.4. Document Viewers

Some new document formats have gained popularity since the advent of UNIX® and the viewers
they require may not be available in the base system. This section demonstrates how to install the
following document viewers:

Application Name Resources Needed Installation from Major Dependencies
Ports

Xpdf light light FreeType

gv light light Xaw3d

Geeqie light light Gtk+ or GNOME

ePDFView light light Gtk+

191

http://www.libreoffice.org/
https://www.FreeBSD.org/ports/editors/
https://www.FreeBSD.org/ports/editors/

Application Name Resources Needed Installation from Major Dependencies
Ports

Okular light heavy KDE

6.4.1. Xpdf

For users that prefer a small FreeBSD PDF viewer, Xpdf provides a light-weight and efficient viewer
which requires few resources. It uses the standard X fonts and does not require any additional
toolkits.

To install the Xpdf package:
pkg install xpdf
If the package is not available, use the Ports Collection:

cd /usr/ports/graphics/xpdf
make install clean

Once the installation is complete, launch xpdf and use the right mouse button to activate the menu.

6.4.2. gV

gv is a PostScript® and PDF viewer. It is based on ghostview, but has a nicer look as it is based on
the Xaw3d widget toolkit. gv has many configurable features, such as orientation, paper size, scale,
and anti-aliasing. Almost any operation can be performed with either the keyboard or the mouse.

To install gv as a package:
pkg install gv
If a package is unavailable, use the Ports Collection:

cd /usr/ports/print/gv
make install clean

6.4.3. Geeqie

Geeqie is a fork from the unmaintained GQView project, in an effort to move development forward
and integrate the existing patches. Geeqie is an image manager which supports viewing a file with a
single click, launching an external editor, and thumbnail previews. It also features a slideshow
mode and some basic file operations, making it easy to manage image collections and to find
duplicate files. Geeqie supports full screen viewing and internationalization.

192

To install the Geeqie package:
pkg install geeqie
If the package is not available, use the Ports Collection:

cd /usr/ports/graphics/geeqie
make install clean

6.4.4. ePDFView

ePDFView is a lightweight PDF document viewer that only uses the Gtk+ and Poppler libraries. It is
currently under development, but already opens most PDF files (even encrypted), save copies of
documents, and has support for printing using CUPS.

To install ePDFView as a package:
pkg install epdfview
If a package is unavailable, use the Ports Collection:

cd /usr/ports/graphics/epdfview
make install clean

6.4.5. Okular

Okular is a universal document viewer based on KPDF for KDE. It can open many document
formats, including PDF, PostScript®, DjVu, CHM, XPS, and ePub.

To install Okular as a package:
pkg install okular
If a package is unavailable, use the Ports Collection:

cd /usr/ports/graphics/okular
make install clean

6.5. Finance

For managing personal finances on a FreeBSD desktop, some powerful and easy-to-use applications
can be installed. Some are compatible with widespread file formats, such as the formats used by

193

Quicken and Excel.

This section covers these programs:

Application Name Resources Needed
GnucCash light
Gnumeric light
KMyMoney light

6.5.1. GnuCash

Installation from
Ports

heavy
heavy
heavy

Major Dependencies

GNOME
GNOME
KDE

GnuCash is part of the GNOME effort to provide user-friendly, yet powerful, applications to end-
users. GnuCash can be used to keep track of income and expenses, bank accounts, and stocks. It
features an intuitive interface while remaining professional.

GnuCash provides a smart register, a hierarchical system of accounts, and many keyboard
accelerators and auto-completion methods. It can split a single transaction into several more
detailed pieces. GnuCash can import and merge Quicken QIF files. It also handles most

international date and currency formats.

To install the GnuCash package:

pkg install gnucash

If the package is not available, use the Ports Collection:

cd /usr/ports/finance/gnucash
make install clean

6.5.2. Gnumeric

Gnumeric is a spreadsheet program developed by the GNOME community. It features convenient
automatic guessing of user input according to the cell format with an autofill system for many
sequences. It can import files in a number of popular formats, including Excel, Lotus 1-2-3, and
Quattro Pro. It has a large number of built-in functions and allows all of the usual cell formats such

as number, currency, date, time, and much more.

To install Gnumeric as a package:

pkg install gnumeric

If the package is not available, use the Ports Collection:

194

cd /usr/ports/math/gnumeric
make install clean

6.5.3. KMyMoney

KMyMoney is a personal finance application created by the KDE community. KMyMoney aims to
provide the important features found in commercial personal finance manager applications. It also
highlights ease-of-use and proper double-entry accounting among its features. KMyMoney imports
from standard Quicken QIF files, tracks investments, handles multiple currencies, and provides a
wealth of reports.

To install KMyMoney as a package:

pkg install kmymoney-kde4

If the package is not available, use the Ports Collection:

cd /usr/ports/finance/kmymoney-kde4
make install clean

195

Chapter 7. Multimedia

7.1. Synopsis

FreeBSD supports a wide variety of sound cards, allowing users to enjoy high fidelity output from a
FreeBSD system. This includes the ability to record and play back audio in the MPEG Audio Layer 3
(MP3), Waveform Audio File (WAV), Ogg Vorbis, and other formats. The FreeBSD Ports Collection
contains many applications for editing recorded audio, adding sound effects, and controlling
attached MIDI devices.

FreeBSD also supports the playback of video files and DVDs. The FreeBSD Ports Collection contains
applications to encode, convert, and playback various video media.

This chapter describes how to configure sound cards, video playback, TV tuner cards, and scanners
on FreeBSD. It also describes some of the applications which are available for using these devices.

After reading this chapter, you will know how to:

* Configure a sound card on FreeBSD.

* Troubleshoot the sound setup.

* Playback and encode MP3s and other audio.

* Prepare a FreeBSD system for video playback.
» Play DVDs, .mpg, and .avi files.

* Rip CD and DVD content into files.

* Configure a TV card.

* Install and setup MythTV on FreeBSD

* Configure an image scanner.

* Configure a Bluetooth headset.
Before reading this chapter, you should:

* Know how to install applications as described in Installing Applications: Packages and Ports.

7.2. Setting Up the Sound Card

Before beginning the configuration, determine the model of the sound card and the chip it uses.
FreeBSD supports a wide variety of sound cards. Check the supported audio devices list of the
Hardware Notes to see if the card is supported and which FreeBSD driver it uses.

In order to use the sound device, its device driver must be loaded. The easiest way is to load a
kernel module for the sound card with kldload(8). This example loads the driver for a built-in audio
chipset based on the Intel specification:

196

../ports/index.html#ports
https://www.FreeBSD.org/releases/12.0R/hardware/
https://www.freebsd.org/cgi/man.cgi?query=kldload&sektion=8&format=html

kldload snd_hda

To automate the loading of this driver at boot time, add the driver to /boot/loader.conf. The line for
this driver is:

snd_hda_load="YES"

Other available sound modules are listed in /boot/defaults/loader.conf. When unsure which driver
to use, load the snd_driver module:

kldload snd driver

This is a metadriver which loads all of the most common sound drivers and can be used to speed up
the search for the correct driver. It is also possible to load all sound drivers by adding the
metadriver to /boot/loader.conf.

To determine which driver was selected for the sound card after loading the snd_driver
metadriver, type cat /dev/sndstat.

7.2.1. Configuring a Custom Kernel with Sound Support

This section is for users who prefer to statically compile in support for the sound card in a custom
kernel. For more information about recompiling a kernel, refer to Configuring the FreeBSD Kernel.

When using a custom kernel to provide sound support, make sure that the audio framework driver
exists in the custom kernel configuration file:

device sound

Next, add support for the sound card. To continue the example of the built-in audio chipset based
on the Intel specification from the previous section, use the following line in the custom kernel
configuration file:

device snd_hda

Be sure to read the manual page of the driver for the device name to use for the driver.

Non-PnP ISA sound cards may require the IRQ and I/O port settings of the card to be added to
/boot/device.hints. During the boot process, loader(8) reads this file and passes the settings to the
kernel. For example, an old Creative SoundBlaster® 16 ISA non-PnP card will use the snd_sbhc(4)
driver in conjunction with snd_sb16. For this card, the following lines must be added to the kernel
configuration file:

197

../kernelconfig/index.html#kernelconfig
https://www.freebsd.org/cgi/man.cgi?query=loader&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=snd_sbc&sektion=4&format=html

device snd_sbc
device snd_sb16

If the card uses the 0x220 I/O port and IRQ 5, these lines must also be added to /boot/device.hints:

hint.sbc.0.at="1isa"
hint.sbc.0.port="0x220"
hint.sbc.0.irg="5"
hint.sbc.0.drg="1"
hint.sbc.0.flags="0x15"

The syntax used in /boot/device.hints is described in sound(4) and the manual page for the driver of
the sound card.

The settings shown above are the defaults. In some cases, the IRQ or other settings may need to be
changed to match the card. Refer to snd_sbc(4) for more information about this card.

7.2.2. Testing Sound

After loading the required module or rebooting into the custom kernel, the sound card should be
detected. To confirm, run dmesg | grep pcm. This example is from a system with a built-in Conexant
CX20590 chipset:

pcmd: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 5 on hdaad
pcm1: <NVIDIA (0x001c) (HDMI/DP 8ch)> at nid 6 on hdaad
pem2: <Conexant (X20590 (Analog 2.0+HP/2.0)> at nid 31,25 and 35,27 on hdaal

The status of the sound card may also be checked using this command:

cat /dev/sndstat

FreeBSD Audio Driver (newpcm: 64bit 2009061500/amd64)

Installed devices:

pcmd: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)

pcml: <NVIDIA (0x001c) (HDMI/DP 8ch)> (play)

pem2: <Conexant (X20590 (Analog 2.0+HP/2.0)> (play/rec) default

The output will vary depending upon the sound card. If no pcm devices are listed, double-check
that the correct device driver was loaded or compiled into the kernel. The next section lists some
common problems and their solutions.

If all goes well, the sound card should now work in FreeBSD. If the CD or DVD drive is properly
connected to the sound card, one can insert an audio (D in the drive and play it with cdcontrol(1):

% cdcontrol -f /dev/acd@ play 1

198

https://www.freebsd.org/cgi/man.cgi?query=sound&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=snd_sbc&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=cdcontrol&sektion=1&format=html

a Audio (Ds have specialized encodings which means that they should not be
mounted using mount(8).

Various applications, such as audio/workman, provide a friendlier interface. The audio/mpgl123
port can be installed to listen to MP3 audio files.

Another quick way to test the card is to send data to /dev/dsp:
% cat filename > /dev/dsp

where filename can be any type of file. This command should produce some noise, confirming that
the sound card is working.

o The /dev/dsp* device nodes will be created automatically as needed. When not in
use, they do not exist and will not appear in the output of Is(1).

7.2.3. Setting up Bluetooth Sound Devices

Connecting to a Bluetooth device is out of scope for this chapter. Refer to “Bluetooth” for more
information.

To get Bluetooth sound sink working with FreeBSD’s sound system, users have to install
audio/virtual oss first:

pkg install virtual_oss
audio/virtual_oss requires cuse to be loaded into the kernel:
kldload cuse
To load cuse during system startup, run this command:
echo 'cuse_load=yes' >> /boot/loader.conf

To use headphones as a sound sink with audio/virtual_oss, users need to create a virtual device
after connecting to a Bluetooth audio device:

virtual_oss -C 2 -c 2 -r 48000 -b 16 -s 768 -R /dev/null -P
/dev/bluetooth/headphones -d dsp

o headphones in this example is a hostname from /etc/bluetooth/hosts. BT_ADDR could
be used instead.

199

https://www.freebsd.org/cgi/man.cgi?query=mount&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/audio/workman/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/mpg123/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=ls&sektion=1&format=html
../advanced-networking/index.html#network-bluetooth
https://cgit.freebsd.org/ports/tree/audio/virtual_oss/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/virtual_oss/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/virtual_oss/pkg-descr

Refer to virtual oss(8) for more information.

7.2.4. Troubleshooting Sound

Common Error Messages lists some common error messages and their solutions:

Table 8. Common Error Messages

Error Solution

sb_dspwr (XX) timed out The I/O port is not set correctly.

bad irq XX The IRQ is set incorrectly. Make sure that the set
IRQ and the sound IRQ are the same.

XXX: gus pcm not attached, out of memory There is not enough available memory to use the
device.

xxx: can’t open /dev/dsp! Type fstat | grep dsp to check if another

application is holding the device open.
Noteworthy troublemakers are esound and
KDE’s sound support.

Modern graphics cards often come with their own sound driver for use with HDMI. This sound
device is sometimes enumerated before the sound card meaning that the sound card will not be
used as the default playback device. To check if this is the case, run dmesg and look for pcm. The
output looks something like this:

hdac@:
hdac1:
hdac@:
hdac@:
hdaco:
hdac@:

pcmo:
peml:
pcm2:
pcm3:

hdac1:

pcmé:
pcm5:
pcmob:
pem/:

HDA
HDA
HDA
HDA
HDA
HDA
<HDA
<HDA
<HDA
<HDA
HDA
<HDA
<HDA
<HDA
<HDA

Driver Revision: 20100226 _0142

Driver Revision: 20100226 0142

Codec #0: NVidia (Unknown)

Codec #1: NVidia (Unknown)

Codec #2: NVidia (Unknown)

Codec #3: NVidia (Unknown)

NVidia (Unknown) PCM #0 DisplayPort> at cad @ nid 1 on hdac@
NVidia (Unknown) PCM #0 DisplayPort> at cad 1 nid 1 on hdac®
NVidia (Unknown) PCM #0 DisplayPort> at cad 2 nid 1 on hdac@
NVidia (Unknown) PCM #0 DisplayPort> at cad 3 nid 1 on hdac®
Codec #2: Realtek ALC889

Realtek ALC889 PCM #0 Analog> at cad 2 nid 1 on hdacl
Realtek ALC889 PCM #1 Analog> at cad 2 nid 1 on hdacl
Realtek ALC889 PCM #2 Digital> at cad 2 nid 1 on hdac1
Realtek ALC889 PCM #3 Digital> at cad 2 nid 1 on hdacl

In this example, the graphics card (NVidia) has been enumerated before the sound card (Realtek
AL(C889). To use the sound card as the default playback device, change hw.snd.default_unit to the
unit that should be used for playback:

200

https://www.freebsd.org/cgi/man.cgi?query=virtual_oss&sektion=8&format=html

sysctl hw.snd.default_unit=n

where n is the number of the sound device to use. In this example, it should be 4. Make this change
permanent by adding the following line to /etc/sysctl.conf:

hw.snd.default _unit=4

Programs using audio/pulseaudio might need to restart the audio/pulseaudio daemon for the
changes in hw.snd.default_unit to take effect. Alternatively, audio/pulseaudio settings can be
changed on the fly. pacmd(1) opens a command line connection to the audio/pulseaudio daemon:

pacmd
Welcome to PulseAudio 14.2! Use "help" for usage information.
>>>

The following command changes the default sink to card number 4 as in the previous example:

set-default-sink 4

Q Do not use the exit command to exit the command line interface. That will kill the
audio/pulseaudio daemon. Use Ctrl + D instead.

7.2.5. Utilizing Multiple Sound Sources

It is often desirable to have multiple sources of sound that are able to play simultaneously. FreeBSD
uses "Virtual Sound Channels" to multiplex the sound card’s playback by mixing sound in the
kernel.

Three sysctl(8) knobs are available for configuring virtual channels:

sysctl dev.pcm.0.play.vchans=4
sysctl dev.pcm.@.rec.vchans=4
sysctl hw.snd.maxautovchans=4

This example allocates four virtual channels, which is a practical number for everyday use. Both
dev.pcm.@.play.vchans=4 and dev.pcm.@.rec.vchans=4 are configurable after a device has been
attached and represent the number of virtual channels pcmo0 has for playback and recording. Since
the pcm module can be loaded independently of the hardware drivers, hw.snd.maxautovchans
indicates how many virtual channels will be given to an audio device when it is attached. Refer to
pcm(4) for more information.

201

https://cgit.freebsd.org/ports/tree/audio/pulseaudio/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/pulseaudio/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/pulseaudio/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=pacmd&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/audio/pulseaudio/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/pulseaudio/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pcm&sektion=4&format=html

The number of virtual channels for a device cannot be changed while it is in use.
o First, close any programs using the device, such as music players or sound
daemons.

The correct pcm device will automatically be allocated transparently to a program that requests
/dev/dspO.

7.2.6. Setting Default Values for Mixer Channels

The default values for the different mixer channels are hardcoded in the source code of the pcm(4)
driver. While sound card mixer levels can be changed using mixer(8) or third-party applications
and daemons, this is not a permanent solution. To instead set default mixer values at the driver
level, define the appropriate values in /boot/device.hints, as seen in this example:

hint.pcm.0.vol="50"

This will set the volume channel to a default value of 50 when the pcm(4) module is loaded.

7.3. MP3 Audio

This section describes some MP3 players available for FreeBSD, how to rip audio (D tracks, and how
to encode and decode MP3s.

7.3.1. MP3 Players

A popular graphical MP3 player is Audacious. It supports Winamp skins and additional plugins. The
interface is intuitive, with a playlist, graphic equalizer, and more. Those familiar with Winamp will
find Audacious simple to use. On FreeBSD, Audacious can be installed from the
multimedia/audacious port or package. Audacious is a descendant of XMMS.

The audio/mpgl123 package or port provides an alternative, command-line MP3 player. Once
installed, specify the MP3 file to play on the command line. If the system has multiple audio devices,
the sound device can also be specified:

mpg123 -a /dev/dsp1.0 Foobar-GreatestHits.mp3

High Performance MPEG 1.0/2.0/2.5 Audio Player for Layers 1, 2 and 3
version 1.18.1; written and copyright by Michael Hipp and others
free software (LGPL) without any warranty but with best wishes

Playing MPEG stream from Foobar-GreatestHits.mp3 ...
MPEG 1.0 layer III, 128 kbit/s, 44100 Hz joint-stereo

Additional MP3 players are available in the FreeBSD Ports Collection.

202

https://www.freebsd.org/cgi/man.cgi?query=pcm&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=mixer&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pcm&sektion=4&format=html
https://cgit.freebsd.org/ports/tree/multimedia/audacious/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/mpg123/pkg-descr

7.3.2. Ripping (D Audio Tracks

Before encoding a CD or (D track to MP3, the audio data on the CD must be ripped to the hard drive.
This is done by copying the raw (D Digital Audio (CDDA) data to WAV files.

The cdda2wav tool, which is installed with the sysutils/cdrtools suite, can be used to rip audio
information from CDs.

With the audio CD in the drive, the following command can be issued as root to rip an entire (D into
individual, per track, WAV files:

cdda2wav -D 0,1,0 -B

In this example, the -D 0,1,0 indicates the SCSI device 0,1,0 containing the (D to rip. Use cdrecord
-scanbus to determine the correct device parameters for the system.

To rip individual tracks, use -t to specify the track:
cdda2wav -D 0,1,0 -t 7

To rip a range of tracks, such as track one to seven, specify a range:
cdda2wav -D 0,1,0 -t 1+7

To rip from an ATAPI (IDE) CDROM drive, specify the device name in place of the SCSI unit numbers.
For example, to rip track 7 from an IDE drive:

cdda2wav -D /dev/acd@ -t 7

Alternately, dd can be used to extract audio tracks on ATAPI drives, as described in “Duplicating
Audio CDs”.

7.3.3. Encoding and Decoding MP3s

Lame is a popular MP3 encoder which can be installed from the audio/lame port. Due to patent
issues, a package is not available.

The following command will convert the ripped WAV file audio0O1.wav to audio01.mp3:

lame -h -b 128 --tt "Foo Song Title" --ta "FooBar Artist" --t1 "FooBar Album" \
--ty "2014" --tc "Ripped and encoded by Foo" --tg "Genre" audio®1.wav audio@1.mp3

The specified 128 kbits is a standard MP3 bitrate while the 160 and 192 bitrates provide higher
quality. The higher the bitrate, the larger the size of the resulting MP3. The -h turns on the "higher
quality but a little slower" mode. The options beginning with --t indicate ID3 tags, which usually

203

https://cgit.freebsd.org/ports/tree/sysutils/cdrtools/pkg-descr
../disks/index.html#duplicating-audiocds
../disks/index.html#duplicating-audiocds
https://cgit.freebsd.org/ports/tree/audio/lame/pkg-descr

contain song information, to be embedded within the MP3 file. Additional encoding options can be
found in the lame manual page.

In order to burn an audio (D from MP3s, they must first be converted to a non-compressed file
format. XMMS can be used to convert to the WAV format, while mpg123 can be used to convert to the
raw Pulse-Code Modulation (PCM) audio data format.

To convert audio01.mp3 using mpg123, specify the name of the PCM file:
mpg123 -s audio®1.mp3 > audiod1.pcm

To use XMMS to convert a MP3 to WAV format, use these steps:

Procedure: Converting to WAV Format in XMMS
1. Launch XMMS.

. Right-click the window to bring up the XMMS menu.
. Select Preferences under Options.

. Change the Output Plugin to "Disk Writer Plugin".

2

3

1

5. Press Configure.
6. Enter or browse to a directory to write the uncompressed files to.

7. Load the MP3 file into XMMS as usual, with volume at 100% and EQ settings turned off.
8

. Press Play. The XMMS will appear as if it is playing the MP3, but no music will be heard. It is
actually playing the MP3 to a file.

9. When finished, be sure to set the default Output Plugin back to what it was before in order to
listen to MP3s again.

Both the WAV and PCM formats can be used with cdrecord. When using WAV files, there will be a small
tick sound at the beginning of each track. This sound is the header of the WAV file. The audio/sox port
or package can be used to remove the header:

% sox -t wav -r 44100 -s -w -c 2 track.wav track.raw

Refer to “Creating and Using CD Media” for more information on using a (D burner in FreeBSD.

7.4. Video Playback

Before configuring video playback, determine the model and chipset of the video card. While Xorg
supports a wide variety of video cards, not all provide good playback performance. To obtain a list
of extensions supported by the Xorg server using the card, run xdpyinfo while Xorg is running.

It is a good idea to have a short MPEG test file for evaluating various players and options. Since
some DVD applications look for DVD media in /dev/dvd by default, or have this device name
hardcoded in them, it might be useful to make a symbolic link to the proper device:

204

https://cgit.freebsd.org/ports/tree/audio/sox/pkg-descr
../disks/index.html#creating-cds

In -sf /dev/cd@ /dev/dvd

Due to the nature of devfs(5), manually created links will not persist after a system reboot. In order
to recreate the symbolic link automatically when the system boots, add the following line to
/etc/devfs.conf:

link cd@ dvd

DVD decryption invokes certain functions that require write permission to the DVD device.

To enhance the shared memory Xorg interface, it is recommended to increase the values of these
sysctl(8) variables:

kern.ipc.shmmax=67108864
kern.ipc.shmall=32768

7.4.1. Determining Video Capabilities

There are several possible ways to display video under Xorg and what works is largely hardware
dependent. Each method described below will have varying quality across different hardware.

Common video interfaces include:

1. Xorg: normal output using shared memory.

2. XVideo: an extension to the Xorg interface which allows video to be directly displayed in
drawable objects through a special acceleration. This extension provides good quality playback
even on low-end machines. The next section describes how to determine if this extension is
running.

3. SDL: the Simple Directmedia Layer is a porting layer for many operating systems, allowing cross-
platform applications to be developed which make efficient use of sound and graphics. SDL
provides a low-level abstraction to the hardware which can sometimes be more efficient than
the Xorg interface. On FreeBSD, SDL can be installed using the devel/sdl20 package or port.

4. DGA: the Direct Graphics Access is an Xorg extension which allows a program to bypass the Xorg
server and directly alter the framebuffer. As it relies on a low-level memory mapping, programs
using it must be run as root. The DGA extension can be tested and benchmarked using dga(1).
When dga is running, it changes the colors of the display whenever a key is pressed. To quit,
press q.

5. SVGAlib: a low level console graphics layer.

7.4.1.1. XVideo

To check whether this extension is running, use xvinfo:

205

https://www.freebsd.org/cgi/man.cgi?query=devfs&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/devel/sdl20/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=dga&sektion=1&format=html

%

% xvinfo

XVideo is supported for the card if the result is similar to:

X-Video Extension version 2.2

screen #0

Adaptor #0: "Savage Streams Engine"

number of ports: 1
port base: 43

operations supported: PutImage

supported visuals:

depth 16, visuallID 0x22
depth 16, visualID 0x23

number of attributes: 5

"XV_COLORKEY" (range @ to 16777215)

client settable attribute

client gettable attribute (current
"XV_BRIGHTNESS" (range -128 to 127)

client settable attribute

client gettable attribute (current
"XV_CONTRAST" (range @ to 255)

client settable attribute

client gettable attribute (current
"XV_SATURATION" (range @ to 255)

client settable
client gettable

attribute
attribute (current

"XV_HUE" (range -180 to 180)

client settable
client gettable

attribute
attribute (current

maximum XvImage size: 1024 x 1024

Number of image formats: 7

id: 0x32595559 (YUY2)

value

value

value

value

value

guid: 59555932-0000-0010-8000-003a00389b71

bits per pixel: 16
number of planes: 1
type: YUV (packed)
id: 0x32315659 (YV12)

guid: 59563132-0000-0010-8000-003a00389b71

bits per pixel: 12

number of planes: 3

type: YUV (planar)
id: 0x30323449 (1420)

guid: 49343230-0000-0010-8000-003a00389b71

bits per pixel: 12

number of planes: 3

type: YUV (planar)
id: 0x36315652 (RV16)

guid: 52563135-0000-0000-0000-000000000000

bits per pixel: 16

206

is 2110)

is Q)

is 128)

is 128)

is 0)

number of planes: 1

type: RGB (packed)

depth: @

red, green, blue masks: @x1f, 0x3e@, 0x7c00
id: 0x35315652 (RV15)

guid: 52563136-0000-0000-0000-000000000000

bits per pixel: 16

number of planes: 1

type: RGB (packed)

depth: @

red, green, blue masks: @x1f, 0x7e@, 0xf800
id: 0x31313259 (Y211)

guid: 59323131-0000-0010-8000-002a00389b71

bits per pixel: 6

number of planes: 3

type: YUV (packed)
id: 0x0

guid: 00000000-0000-0000-0000-000000000000

bits per pixel: 0

number of planes: @

type: RGB (packed)

depth: 1

red, green, blue masks: 0x0, 0x0, 0x0

The formats listed, such as YUV2 and YUV12, are not present with every implementation of XVideo
and their absence may hinder some players.
If the result instead looks like:

X-Video Extension version 2.2

screen #0
no adaptors present

XVideo is probably not supported for the card. This means that it will be more difficult for the
display to meet the computational demands of rendering video, depending on the video card and
processor.

7.4.2. Ports and Packages Dealing with Video

This section introduces some of the software available from the FreeBSD Ports Collection which can
be used for video playback.

7.4.2.1. MPlayer and MEncoder

MPlayer is a command-line video player with an optional graphical interface which aims to provide
speed and flexibility. Other graphical front-ends to MPlayer are available from the FreeBSD Ports
Collection.

MPlayer can be installed using the multimedia/mplayer package or port. Several compile options

207

https://cgit.freebsd.org/ports/tree/multimedia/mplayer/pkg-descr

are available and a variety of hardware checks occur during the build process. For these reasons,
some users prefer to build the port rather than install the package.

When compiling the port, the menu options should be reviewed to determine the type of support to
compile into the port. If an option is not selected, MPlayer will not be able to display that type of
video format. Use the arrow keys and spacebar to select the required formats. When finished, press
Enter to continue the port compile and installation.

By default, the package or port will build the mplayer command line utility and the gmplayer
graphical utility. To encode videos, compile the multimedia/mencoder port. Due to licensing
restrictions, a package is not available for MEncoder.

The first time MPlayer is run, it will create ~/mplayer in the user’s home directory. This
subdirectory contains default versions of the user-specific configuration files.

This section describes only a few common uses. Refer to mplayer(1) for a complete description of its
numerous options.

To play the file testfile.avi, specify the video interfaces with -vo, as seen in the following examples:

o

mplayer -vo xv testfile.avi

o

mplayer -vo sdl testfile.avi

o

mplayer -vo x11 testfile.avi

E=+

mplayer -vo dga testfile.avi

mplayer -vo 'sdl:dga' testfile.avi

It is worth trying all of these options, as their relative performance depends on many factors and
will vary significantly with hardware.

To play a DVD, replace testfile.avi with dvd://N -dvd-device DEVICE, where N is the title number to
play and DEVICE is the device node for the DVD. For example, to play title 3 from /dev/dvd:

mplayer -vo xv dvd://3 -dvd-device /dev/dvd

The default DVD device can be defined during the build of the MPlayer port by
o including the WITH_DVD_DEVICE=/path/to/desired/device option. By default, the
device is /dev/cd0. More details can be found in the port’s Makefile.options.

To stop, pause, advance, and so on, use a keybinding. To see the list of keybindings, run mplayer -h

208

https://cgit.freebsd.org/ports/tree/multimedia/mencoder/pkg-descr

or read mplayer(1).

Additional playback options include -fs -zoom, which engages fullscreen mode, and -framedrop,
which helps performance.

Each user can add commonly used options to their ~/.mplayer/config like so:
VO=XV

fs=yes
zoom=yes

mplayer can be used to rip a DVD title to a .vob. To dump the second title from a DVD:

mplayer -dumpstream -dumpfile out.vob dvd://2 -dvd-device /dev/dvd

The output file, out.vob, will be in MPEG format.

Anyone wishing to obtain a high level of expertise with UNIX® video should consult
mplayerhg.hu/DOCS as it is technically informative. This documentation should be considered as
required reading before submitting any bug reports.

Before using mencoder, it is a good idea to become familiar with the options described at
mplayerhq.hu/DOCS/HTML/en/mencoder.html. There are innumerable ways to improve quality,
lower bitrate, and change formats, and some of these options may make the difference between
good or bad performance. Improper combinations of command line options can yield output files
that are unplayable even by mplayer.

Here is an example of a simple copy:

%

¢ mencoder input.avi -oac copy -ovc copy -0 output.avi

To rip to a file, use -dumpfile with mplayer.
To convert input.avi to the MPEG4 codec with MPEG3 audio encoding, first install the audio/lame

port. Due to licensing restrictions, a package is not available. Once installed, type:

% mencoder input.avi -oac mp3lame -lameopts br=192 \
-ove lavc -lavcopts vcodec=mpeg4:vhq -o output.avi

This will produce output playable by applications such as mplayer and xine.

input.avi can be replaced with dvd://1 -dvd-device /dev/dvd and run as root to re-encode a DVD title
directly. Since it may take a few tries to get the desired result, it is recommended to instead dump
the title to a file and to work on the file.

209

http://www.mplayerhq.hu/DOCS/
http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
https://cgit.freebsd.org/ports/tree/audio/lame/pkg-descr

7.4.2.2. The xine Video Player

xine is a video player with a reusable base library and a modular executable which can be
extended with plugins. It can be installed using the multimedia/xine package or port.

In practice, xine requires either a fast CPU with a fast video card, or support for the XVideo
extension. The xine video player performs best on XVideo interfaces.

By default, the xXine player starts a graphical user interface. The menus can then be used to open a
specific file.

Alternatively, xine may be invoked from the command line by specifying the name of the file to
play:

% xine -g -p mymovie.avi

Refer to xine-project.org/faq for more information and troubleshooting tips.

7.4.2.3. The Transcode Utilities

Transcode provides a suite of tools for re-encoding video and audio files. Transcode can be used to
merge video files or repair broken files using command line tools with stdin/stdout stream
interfaces.

In FreeBSD, Transcode can be installed using the multimedia/transcode package or port. Many
users prefer to compile the port as it provides a menu of compile options for specifying the support
and codecs to compile in. If an option is not selected, Transcode will not be able to encode that
format. Use the arrow keys and spacebar to select the required formats. When finished, press Enter
to continue the port compile and installation.

This example demonstrates how to convert a DivX file into a PAL MPEG-1 file (PAL VCD):

% transcode -i input.avi -V --export_prof vcd-pal -o output_ved
% mplex -f 1 -o output_ved.mpg output_ved.mlv output_vcd.mpa

The resulting MPEG file, output_vcd.mpg, is ready to be played with MPlayer. The file can be burned
on a (D media to create a video (D using a utility such as multimedia/vcdimager or sysutils/cdrdao.

In addition to the manual page for transcode, refer to transcoding.org/cgi-bin/transcode for further
information and examples.

7.5. TV Cards

TV cards can be used to watch broadcast or cable TV on a computer. Most cards accept composite
video via an RCA or S-video input and some cards include a FM radio tuner.

FreeBSD provides support for PCl-based TV cards using a Brooktree Bt848/849/878/879 video
capture chip with the bktr(4) driver. This driver supports most Pinnacle PCTV video cards. Before

210

https://cgit.freebsd.org/ports/tree/multimedia/xine/pkg-descr
http://www.xine-project.org/faq
https://cgit.freebsd.org/ports/tree/multimedia/transcode/pkg-descr
https://cgit.freebsd.org/ports/tree/multimedia/vcdimager/pkg-descr
https://cgit.freebsd.org/ports/tree/sysutils/cdrdao/pkg-descr
http://www.transcoding.org/cgi-bin/transcode
https://www.freebsd.org/cgi/man.cgi?query=bktr&sektion=4&format=html

purchasing a TV card, consult bktr(4) for a list of supported tuners.

7.5.1. Loading the Driver

In order to use the card, the bktr(4) driver must be loaded. To automate this at boot time, add the
following line to /boot/loader.conf:

bktr load="YES"

Alternatively, one can statically compile support for the TV card into a custom kernel. In that case,
add the following lines to the custom kernel configuration file:

device bktr
device 1Jicbus
device 1iicbb
device smbus

These additional devices are necessary as the card components are interconnected via an 12C bus.
Then, build and install a new kernel.

To test that the tuner is correctly detected, reboot the system. The TV card should appear in the boot
messages, as seen in this example:

bktr@: <BrookTree 848A> mem 0xd7000000-0xd7000fff irq 10 at device 10.0 on pci@
iicbb@: <I2C bit-banging driver> on bti2c@

iicbus@: <Philips I2C bus> on iicbb@ master-only

iicbus1: <Philips I2C bus> on iicbb@ master-only

smbus@: <System Management Bus> on bti2c@

bktr@: Pinnacle/Miro TV, Philips SECAM tuner.

The messages will differ according to the hardware. If necessary, it is possible to override some of
the detected parameters using sysctl(8) or custom kernel configuration options. For example, to
force the tuner to a Philips SECAM tuner, add the following line to a custom kernel configuration
file:

options OVERRIDE_TUNER=6
or, use sysctl(8):
sysctl hw.bt848.tuner=6

Refer to bktr(4) for a description of the available sysctl(8) parameters and kernel options.

211

https://www.freebsd.org/cgi/man.cgi?query=bktr&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=bktr&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=bktr&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html

7.5.2. Useful Applications
To use the TV card, install one of the following applications:

* multimedia/fxtv provides TV-in-a-window and image/audio/video capture capabilities.
» multimedia/xawtv is another TV application with similar features.

* audio/xmradio provides an application for using the FM radio tuner of a TV card.

More applications are available in the FreeBSD Ports Collection.

7.5.3. Troubleshooting

If any problems are encountered with the TV card, check that the video capture chip and the tuner
are supported by bktr(4) and that the right configuration options were used. For more support or to
ask questions about supported TV cards, refer to the FreeBSD multimedia mailing list mailing list.

7.6. MythTV

MythTV is a popular, open source Personal Video Recorder (PVR) application. This section
demonstrates how to install and setup MythTV on FreeBSD. Refer to mythtv.org/wiki for more
information on how to use MythTV.

MythTV requires a frontend and a backend. These components can either be installed on the same
system or on different machines.

The frontend can be installed on FreeBSD using the multimedia/mythtv-frontend package or port.
Xorg must also be installed and configured as described in The X Window System. Ideally, this
system has a video card that supports X-Video Motion Compensation (XvM(C) and, optionally, a Linux
Infrared Remote Control (LIRC)-compatible remote.

To install both the backend and the frontend on FreeBSD, use the multimedia/mythtv package or
port. A MySQL™ database server is also required and should automatically be installed as a
dependency. Optionally, this system should have a tuner card and sufficient storage to hold
recorded data.

7.6.1. Hardware

MythTV uses Video for Linux (V4L) to access video input devices such as encoders and tuners. In
FreeBSD, MythTV works best with USB DVB-S/C/T cards as they are well supported by the
multimedia/webcamd package or port which provides a V4L userland application. Any Digital Video
Broadcasting (DVB) card supported by webcamd should work with MythTV. A list of known working
cards can be found at wiki.freebsd.org/WebcamCompat. Drivers are also available for Hauppauge
cards in the multimedia/pvr250 and multimedia/pvrxxx ports, but they provide a non-standard
driver interface that does not work with versions of MythTV greater than 0.23. Due to licensing
restrictions, no packages are available and these two ports must be compiled.

The wiki.freebsd.org/HTPC page contains a list of all available DVB drivers.

212

https://cgit.freebsd.org/ports/tree/multimedia/fxtv/pkg-descr
https://cgit.freebsd.org/ports/tree/multimedia/xawtv/pkg-descr
https://cgit.freebsd.org/ports/tree/audio/xmradio/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=bktr&sektion=4&format=html
https://lists.FreeBSD.org/subscription/freebsd-multimedia
http://www.mythtv.org/wiki/
https://cgit.freebsd.org/ports/tree/multimedia/mythtv-frontend/pkg-descr
../x11/index.html#x11
https://cgit.freebsd.org/ports/tree/multimedia/mythtv/pkg-descr
https://cgit.freebsd.org/ports/tree/multimedia/webcamd/pkg-descr
https://wiki.freebsd.org/WebcamCompat
https://cgit.freebsd.org/ports/tree/multimedia/pvr250/pkg-descr
https://cgit.freebsd.org/ports/tree/multimedia/pvrxxx/pkg-descr
https://wiki.freebsd.org/HTPC

7.6.2. Setting up the MythTV Backend

To install MythTV using binary packages:
pkg install mythtv
Alternatively, to install from the Ports Collection:

cd /usr/ports/multimedia/mythtv
make install

Once installed, set up the MythTV database:

mysql -uroot -p < /usr/local/share/mythtv/database/mc.sql
Then, configure the backend:

mythtv-setup
Finally, start the backend:

sysrc mythbackend_enable=yes
service mythbackend start

7.7. Image Scanners

In FreeBSD, access to image scanners is provided by SANE (Scanner Access Now Easy), which is
available in the FreeBSD Ports Collection. SANE will also use some FreeBSD device drivers to
provide access to the scanner hardware.

FreeBSD supports both SCSI and USB scanners. Depending upon the scanner interface, different
device drivers are required. Be sure the scanner is supported by SANE prior to performing any
configuration. Refer to http:/www.sane-project.org/sane-supported-devices.html for more
information about supported scanners.

This chapter describes how to determine if the scanner has been detected by FreeBSD. It then
provides an overview of how to configure and use SANE on a FreeBSD system.

7.7.1. Checking the Scanner

The GENERIC Kkernel includes the device drivers needed to support USB scanners. Users with a
custom kernel should ensure that the following lines are present in the custom kernel configuration
file:

213

http://www.sane-project.org/sane-supported-devices.html

device usb
device uhci
device ohci
device ehci
device xhci

To determine if the USB scanner is detected, plug it in and use dmesg to determine whether the
scanner appears in the system message buffer. If it does, it should display a message similar to this:

ugen@.2: <EPSON> at usbus@

In this example, an EPSON Perfection® 1650 USB scanner was detected on /dev/ugen0.2.

If the scanner uses a SCSI interface, it is important to know which SCSI controller board it will use.
Depending upon the SCSI chipset, a custom kernel configuration file may be needed. The GENERIC
kernel supports the most common SCSI controllers. Refer to /usr/src/sys/conf/NOTES to determine
the correct line to add to a custom kernel configuration file. In addition to the SCSI adapter driver,
the following lines are needed in a custom kernel configuration file:

device scbus
device pass

Verify that the device is displayed in the system message buffer:

pass2 at aic@ bus @ target 2 Tun 0
pass2: <AGFA SNAPSCAN 600 1.10> Fixed Scanner SCSI-2 device
pass2: 3.300MB/s transfers

If the scanner was not powered-on at system boot, it is still possible to manually force detection by
performing a SCSI bus scan with camcontrol:

camcontrol rescan all

Re-scan of bus @ was successful
Re-scan of bus 1 was successful
Re-scan of bus 2 was successful
Re-scan of bus 3 was successful

The scanner should now appear in the SCSI devices list:

214

camcontrol devlist

<IBM DDRS-34560 S97B> at scbus@ target 5 lun @ (pass@,dad)
<IBM DDRS-34560 S97B> at scbus@ target 6 lun @ (passi,dal)
<AGFA SNAPSCAN 600 1.10> at scbus1 target 2 Tlun @ (pass3)

<PHILIPS CDD3610 CD-R/RW 1.00> at scbus2 target @ lun @ (pass2,cdd)

Refer to scsi(4) and camcontrol(8) for more details about SCSI devices on FreeBSD.

7.7.2. SANE Configuration

The SANE system provides the access to the scanner via backends (graphics/sane-backends). Refer
to http://www.sane-project.org/sane-supported-devices.html to determine which backend supports
the scanner. A graphical scanning interface is provided by third party applications like Kooka
(graphics/kooka) or XSane (graphics/xsane). SANE’s backends are enough to test the scanner.

To install the backends from binary package:
pkg install sane-backends
Alternatively, to install from the Ports Collection

cd /usr/ports/graphics/sane-backends
make install clean

After installing the graphics/sane-backends port or package, use sane-find-scanner to check the
scanner detection by the SANE system:

sane-find-scanner -q
found SCSI scanner "AGFA SNAPSCAN 600 1.10" at /dev/pass3

The output should show the interface type of the scanner and the device node used to attach the
scanner to the system. The vendor and the product model may or may not appear.

o Some USB scanners require firmware to be loaded. Refer to sane-find-scanner(1)
and sane(7) for details.

Next, check if the scanner will be identified by a scanning frontend. The SANE backends include

scanimage which can be used to list the devices and perform an image acquisition. Use -L to list the
scanner devices. The first example is for a SCSI scanner and the second is for a USB scanner:

215

https://www.freebsd.org/cgi/man.cgi?query=scsi&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=camcontrol&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/graphics/sane-backends/pkg-descr
http://www.sane-project.org/sane-supported-devices.html
https://cgit.freebsd.org/ports/tree/graphics/kooka/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/xsane/pkg-descr
https://cgit.freebsd.org/ports/tree/graphics/sane-backends/pkg-descr

scanimage -L
device ‘snapscan:/dev/pass3' is a AGFA SNAPSCAN 600 flatbed scanner

scanimage -L
device 'epson2:1ibusb:000:002' is a Epson GT-8200 flatbed scanner

In this second example, epson2 is the backend name and 1ibusb:000:002 means /dev/ugen0.2 is the
device node used by the scanner.

If scanimage is unable to identify the scanner, this message will appear:

scanimage -L

No scanners were identified. If you were expecting something different,
check that the scanner is plugged in, turned on and detected by the
sane-find-scanner tool (if appropriate). Please read the documentation
which came with this software (README, FAQ, manpages).

If this happens, edit the backend configuration file in /usr/local/etc/sane.d/ and define the scanner
device used. For example, if the undetected scanner model is an EPSON Perfection® 1650 and it
uses the epson2 backend, edit /usr/local/etc/sane.d/epson2.conf. When editing, add a line specifying
the interface and the device node used. In this case, add the following line:

usb /dev/ugend.?

Save the edits and verify that the scanner is identified with the right backend name and the device
node:

scanimage -L
device 'epson2:1ibusb:000:002"' is a Epson GT-8200 flatbed scanner

Once scanimage -L sees the scanner, the configuration is complete and the scanner is now ready to
use.

While scanimage can be used to perform an image acquisition from the command line, it is often
preferable to use a graphical interface to perform image scanning. Applications like Kooka or XSane
are popular scanning frontends. They offer advanced features such as various scanning modes,
color correction, and batch scans. XSane is also usable as a GIMP plugin.

7.7.3. Scanner Permissions

In order to have access to the scanner, a user needs read and write permissions to the device node
used by the scanner. In the previous example, the USB scanner uses the device node /dev/ugen0.2
which is really a symlink to the real device node /dev/usb/0.2.0. The symlink and the device node
are owned, respectively, by the wheel and operator groups. While adding the user to these groups
will allow access to the scanner, it is considered insecure to add a user to wheel. A better solution is

216

to create a group and make the scanner device accessible to members of this group.

This example creates a group called usb:
pw groupadd usb

Then, make the /dev/ugen0.2 symlink and the /dev/usb/0.2.0 device node accessible to the usb group
with write permissions of 0660 or 0664 by adding the following lines to /etc/devfs.rules:

[system=5]
add path ugen@.2 mode 0660 group usb
add path usb/0.2.0 mode 0666 group usb

It happens the device node changes with the addition or removal of devices, so one
may want to give access to all USB devices using this ruleset instead:

o [system=5]

add path 'ugen*' mode 0660 group usb
add path 'usb/*' mode 0666 group usb

Refer to devfs.rules(5) for more information about this file.

Next, enable the ruleset in /etc/rc.conf:
devfs_system_ruleset="system"

And, restart the devfs(8) system:
service devfs restart

Finally, add the users to usb in order to allow access to the scanner:
pw groupmod usb -m joe

For more details refer to pw(8).

217

https://www.freebsd.org/cgi/man.cgi?query=devfs.rules&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=devfs&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=pw&sektion=8&format=html

Chapter 8. Configuring the FreeBSD Kernel

8.1. Synopsis

The kernel is the core of the FreeBSD operating system. It is responsible for managing memory,
enforcing security controls, networking, disk access, and much more. While much of FreeBSD is
dynamically configurable, it is still occasionally necessary to configure and compile a custom
kernel.

After reading this chapter, you will know:

* When to build a custom kernel.

* How to take a hardware inventory.

* How to customize a kernel configuration file.

* How to use the kernel configuration file to create and build a new kernel.
* How to install the new kernel.

» How to troubleshoot if things go wrong.

All of the commands listed in the examples in this chapter should be executed as root.

8.2. Why Build a Custom Kernel?

Traditionally, FreeBSD used a monolithic kernel. The kernel was one large program, supported a
fixed list of devices, and in order to change the kernel’s behavior, one had to compile and then
reboot into a new kernel.

Today, most of the functionality in the FreeBSD kernel is contained in modules which can be
dynamically loaded and unloaded from the kernel as necessary. This allows the running kernel to
adapt immediately to new hardware and for new functionality to be brought into the kernel. This is
known as a modular kernel.

Occasionally, it is still necessary to perform static kernel configuration. Sometimes the needed
functionality is so tied to the kernel that it can not be made dynamically loadable. Some security
environments prevent the loading and unloading of kernel modules and require that only needed
functionality is statically compiled into the kernel.

Building a custom kernel is often a rite of passage for advanced BSD users. This process, while time
consuming, can provide benefits to the FreeBSD system. Unlike the GENERIC kernel, which must
support a wide range of hardware, a custom kernel can be stripped down to only provide support
for that computer’s hardware. This has a number of benefits, such as:

» Faster boot time. Since the kernel will only probe the hardware on the system, the time it takes
the system to boot can decrease.

* Lower memory usage. A custom kernel often uses less memory than the GENERIC kernel by
omitting unused features and device drivers. This is important because the kernel code remains
resident in physical memory at all times, preventing that memory from being used by

218

applications. For this reason, a custom kernel is useful on a system with a small amount of RAM.

* Additional hardware support. A custom kernel can add support for devices which are not
present in the GENERIC kernel.

Before building a custom kernel, consider the reason for doing so. If there is a need for specific
hardware support, it may already exist as a module.

Kernel modules exist in /boot/kernel and may be dynamically loaded into the running kernel using
kldload(8). Most kernel drivers have a loadable module and manual page. For example, the ath(4)
wireless Ethernet driver has the following information in its manual page:

Alternatively, to load the driver as a module at boot time, place the

following line in 1oader.
conf(5):

if _ath load="YES"

Adding if_ath_load="YES" to /boot/loader.conf will load this module dynamically at boot time.

In some cases, there is no associated module in /boot/kernel. This is mostly true for certain
subsystems.

8.3. Finding the System Hardware

Before editing the kernel configuration file, it is recommended to perform an inventory of the
machine’s hardware. On a dual-boot system, the inventory can be created from the other operating
system. For example, Microsoft®'s Device Manager contains information about installed devices.

o Some versions of Microsoft® Windows® have a System icon which can be used to
access Device Manager.

If FreeBSD is the only installed operating system, use dmesg(8) to determine the hardware that was
found and listed during the boot probe. Most device drivers on FreeBSD have a manual page which
lists the hardware supported by that driver. For example, the following lines indicate that the
psm(4) driver found a mouse:

psm@: <PS/2 Mouse> irq 12 on atkbdc®

psm@: [GIANT-LOCKED]

psmd: [ITHREAD]

psmd: model Generic PS/2 mouse, device ID 0

Since this hardware exists, this driver should not be removed from a custom kernel configuration
file.

If the output of dmesg does not display the results of the boot probe output, instead read the contents
of /var/run/dmesg.boot.

219

https://www.freebsd.org/cgi/man.cgi?query=kldload&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ath&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=dmesg&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=psm&sektion=4&format=html

Another tool for finding hardware is pciconf(8), which provides more verbose output. For example:

% pciconf -lv

ath0epci0:3:0:0: class=0x020000 card=0x058a1014 chip=0x1014168c rev=0x01 hdr
=0x00

vendor = "Atheros Communications Inc.'

device = 'AR5212 Atheros AR5212 802.11abg wireless'

class = network

subclass = ethernet

This output shows that the ath driver located a wireless Ethernet device.

The -k flag of man(1) can be used to provide useful information. For example, it can be used to
display a list of manual pages which contain a particular device brand or name:

man -k Atheros
ath(4) - Atheros IEEE 802.11 wireless network driver
ath_hal(4) - Atheros Hardware Access Layer (HAL)

Once the hardware inventory list is created, refer to it to ensure that drivers for installed hardware
are not removed as the custom kernel configuration is edited.

8.4. The Configuration File

In order to create a custom kernel configuration file and build a custom kernel, the full FreeBSD
source tree must first be installed.

If /usr/src/ does not exist or it is empty, source has not been installed. Source can be installed using
Git and the instructions in “Using Git”.

Once source is installed, review the contents of /usr/src/sys. This directory contains a number of
subdirectories, including those which represent the following supported architectures: amd64, 1386,
powerpc, and sparc64. Everything inside a particular architecture’s directory deals with that
architecture only and the rest of the code is machine independent code common to all platforms.
Each supported architecture has a conf subdirectory which contains the GENERIC kernel
configuration file for that architecture.

Do not make edits to GENERIC. Instead, copy the file to a different name and make edits to the copy.
The convention is to use a name with all capital letters. When maintaining multiple FreeBSD
machines with different hardware, it is a good idea to name it after the machine’s hostname. This
example creates a copy, named MYKERNEL, of the GENERIC configuration file for the amd64
architecture:

cd /usr/src/sys/amdb4/conf
cp GENERIC MYKERNEL

220

https://www.freebsd.org/cgi/man.cgi?query=pciconf&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=man&sektion=1&format=html
../mirrors/index.html#git

MYKERNEL can now be customized with any ASCII text editor. The default editor is vi, though an
easier editor for beginners, called ee, is also installed with FreeBSD.

The format of the kernel configuration file is simple. Each line contains a keyword that represents a
device or subsystem, an argument, and a brief description. Any text after a is considered a
comment and ignored. To remove kernel support for a device or subsystem, put a at the
beginning of the line representing that device or subsystem. Do not add or remove a # for any line
that you do not understand.

It is easy to remove support for a device or option and end up with a broken

A kernel. For example, if the ata(4) driver is removed from the kernel configuration
file, a system using ATA disk drivers may not boot. When in doubt, just leave
support in the kernel.

In addition to the brief descriptions provided in this file, additional descriptions are contained in
NOTES, which can be found in the same directory as GENERIC for that architecture. For
architecture independent options, refer to /usr/src/sys/conf/NOTES.

When finished customizing the kernel configuration file, save a backup copy to a
location outside of /usr/src.

Alternately, keep the kernel configuration file elsewhere and create a symbolic
link to the file:

cd /usr/src/sys/amdb64/conf

mkdir /root/kernels

cp GENERIC /root/kernels/MYKERNEL
1n -s /root/kernels/MYKERNEL

An include directive is available for use in configuration files. This allows another configuration file
to be included in the current one, making it easy to maintain small changes relative to an existing
file. If only a small number of additional options or drivers are required, this allows a delta to be
maintained with respect to GENERIC, as seen in this example:

include GENERIC
ident MYKERNEL

options IPFIREWALL

options DUMMYNET

options IPFIREWALL_DEFAULT_TO_ACCEPT
options IPDIVERT

Using this method, the local configuration file expresses local differences from a GENERIC kernel.
As upgrades are performed, new features added to GENERIC will also be added to the local kernel
unless they are specifically prevented using nooptions or nodevice. A comprehensive list of
configuration directives and their descriptions may be found in config(5).

221

https://www.freebsd.org/cgi/man.cgi?query=ata&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=config&sektion=5&format=html

To build a file which contains all available options, run the following command as
root:

cd /usr/src/sys/arch/conf && make LINT

8.5. Building and Installing a Custom Kernel

Once the edits to the custom configuration file have been saved, the source code for the kernel can
be compiled using the following steps:

Procedure: Building a Kernel . Change to this directory:

+

cd /usr/src
1. Compile the new kernel by specifying the name of the custom kernel configuration file:
make buildkernel KERNCONF=MYKERNEL

2. Install the new kernel associated with the specified kernel configuration file. This command will
copy the new kernel to /boot/kernel/kernel and save the old kernel to /boot/kernel.old/kernel:

make installkernel KERNCONF=MYKERNEL

3. Shutdown the system and reboot into the new Kkernel. If something goes wrong, refer to The
kernel does not boot.

By default, when a custom kernel is compiled, all kernel modules are rebuilt. To update a kernel
faster or to build only custom modules, edit /etc/make.conf before starting to build the kernel.

For example, this variable specifies the list of modules to build instead of using the default of
building all modules:

MODULES_OVERRIDE = linux acpi
Alternately, this variable lists which modules to exclude from the build process:
WITHOUT_MODULES = Tinux acpi sound

Additional variables are available. Refer to make.conf(5) for details.

222

https://www.freebsd.org/cgi/man.cgi?query=make.conf&sektion=5&format=html

8.6. If Something Goes Wrong
There are four categories of trouble that can occur when building a custom kernel:

config fails

If config fails, it will print the line number that is incorrect. As an example, for the following
message, make sure that line 17 is typed correctly by comparing it to GENERIC or NOTES:

config: line 17: syntax error

make fails

If make fails, it is usually due to an error in the kernel configuration file which is not severe
enough for config to catch. Review the configuration, and if the problem is not apparent, send an
email to the FreeBSD general questions mailing list which contains the kernel configuration file.

The kernel does not boot

If the new kernel does not boot or fails to recognize devices, do not panic! Fortunately, FreeBSD
has an excellent mechanism for recovering from incompatible kernels. Simply choose the kernel
to boot from at the FreeBSD boot loader. This can be accessed when the system boot menu
appears by selecting the "Escape to a loader prompt" option. At the prompt, type boot kernel.old,
or the name of any other kernel that is known to boot properly.

After booting with a good kernel, check over the configuration file and try to build it again. One
helpful resource is /var/log/messages which records the kernel messages from every successful
boot. Also, dmesg(8) will print the kernel messages from the current boot.

When troubleshooting a kernel, make sure to keep a copy of GENERIC, or some
other kernel that is known to work, as a different name that will not get erased
on the next build. This is important because every time a new Kkernel is
installed, kernel.old is overwritten with the last installed kernel, which may or

o may not be bootable. As soon as possible, move the working kernel by
renaming the directory containing the good kernel:

mv /boot/kernel /boot/kernel.bad
mv /boot/kernel.good /boot/kernel

The kernel works, but ps(1) does not

If the kernel version differs from the one that the system utilities have been built with, for
example, a kernel built from -CURRENT sources is installed on a -RELEASE system, many system
status commands like ps(1) and vmstat(8) will not work. To fix this, recompile and install a world
built with the same version of the source tree as the kernel. It is never a good idea to use a
different version of the kernel than the rest of the operating system.

223

https://lists.FreeBSD.org/subscription/freebsd-questions
https://www.freebsd.org/cgi/man.cgi?query=dmesg&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=vmstat&sektion=8&format=html
../cutting-edge/index.html#makeworld

Chapter 9. Printing

Putting information on paper is a vital function, despite many attempts to eliminate it. Printing has
two basic components. The data must be delivered to the printer, and must be in a form that the
printer can understand.

9.1. Quick Start

Basic printing can be set up quickly. The printer must be capable of printing plain ASCII text. For
printing to other types of files, see Filters.

224

1. Create a directory to store files while they are being printed:

mkdir -p /var/spool/lpd/1p
chown daemon:daemon /var/spool/1lpd/1p
chmod 770 /var/spool/1pd/1p

2. As root, create /etc/printcap with these contents:

1p:\

1p=/dev/unlptd:\ @
sh:\

mx#0:\
sd=/var/spool/1pd/1p:\
1f=/var/log/1pd-errs:

@ This line is for a printer connected to a USB port.

For a printer connected to a parallel or "printer" port, use:
:1p=/dev/1pt0:\

For a printer connected directly to a network, use:
:1p=:rm=network-printer-name:rp=raw:\

Replace network-printer-name with the DNS host name of the network printer.

3. Enable LPD by editing /etc/rc.conf, adding this line:
1pd_enable="YES"
Start the service:

service lpd start
Starting 1pd.

4. Print a test:

printf "1. This printer can print.\n2. This is the second line.\n" | 1pr

(r') If both lines do not start at the left border, but "stairstep” instead, see
- Preventing Stairstepping on Plain Text Printers.

225

Text files can now be printed with 1pr. Give the filename on the command line, or pipe
output directly into 1pr.

pr textfile.txt

— =

9.2. Printer Connections

Printers are connected to computer systems in a variety of ways. Small desktop printers are usually
connected directly to a computer’s USB port. Older printers are connected to a parallel or "printer"
port. Some printers are directly connected to a network, making it easy for multiple computers to
share them. A few printers use a rare serial port connection.

FreeBSD can communicate with all of these types of printers.

usB

USB printers can be connected to any available USB port on the computer.

When FreeBSD detects a USB printer, two device entries are created: /dev/ulptO and /dev/unlptO.
Data sent to either device will be relayed to the printer. After each print job, ulptO resets the USB
port. Resetting the port can cause problems with some printers, so the unlpt0 device is usually
used instead. unlptO does not reset the USB port at all.

Parallel (IEEE-1284)

The parallel port device is /dev/lpt0. This device appears whether a printer is attached or not, it
is not autodetected.

Vendors have largely moved away from these "legacy" ports, and many computers no longer
have them. Adapters can be used to connect a parallel printer to a USB port. With such an
adapter, the printer can be treated as if it were actually a USB printer. Devices called print servers
can also be used to connect parallel printers directly to a network.

Serial (RS-232)

Serial ports are another legacy port, rarely used for printers except in certain niche applications.
Cables, connectors, and required wiring vary widely.

For serial ports built into a motherboard, the serial device name is /dev/cuau0 or /dev/cuaul.
Serial USB adapters can also be used, and these will appear as /dev/cuaU0.

Several communication parameters must be known to communicate with a serial printer. The
most important are baud rate or BPS (Bits Per Second) and parity. Values vary, but typical serial
printers use a baud rate of 9600 and no parity.

Network

Network printers are connected directly to the local computer network.

The DNS hostname of the printer must be known. If the printer is assigned a dynamic address by

226

DHCP, DNS should be dynamically updated so that the host name always has the correct IP address.
Network printers are often given static IP addresses to avoid this problem.

Most network printers understand print jobs sent with the LPD protocol. A print queue name
can also be specified. Some printers process data differently depending on which queue is used.
For example, a raw queue prints the data unchanged, while the text queue adds carriage returns
to plain text.

Many network printers can also print data sent directly to port 9100.

9.2.1. Summary

Wired network connections are usually the easiest to set up and give the fastest printing. For direct
connection to the computer, USB is preferred for speed and simplicity. Parallel connections work but
have limitations on cable length and speed. Serial connections are more difficult to configure. Cable
wiring differs between models, and communication parameters like baud rate and parity bits must
add to the complexity. Fortunately, serial printers are rare.

9.3. Common Page Description Languages

Data sent to a printer must be in a language that the printer can understand. These languages are
called Page Description Languages, or PDLs.

ASCII

Plain ASCII text is the simplest way to send data to a printer. Characters correspond one to one
with what will be printed: an A in the data prints an A on the page. Very little formatting is
available. There is no way to select a font or proportional spacing. The forced simplicity of plain
ASCII means that text can be printed straight from the computer with little or no encoding or
translation. The printed output corresponds directly with what was sent.

Some inexpensive printers cannot print plain ASCII text. This makes them more difficult to set
up, but it is usually still possible.

PostScript®

PostScript® is almost the opposite of ASCII. Rather than simple text, a PostScript® program is a
set of instructions that draw the final document. Different fonts and graphics can be used.
However, this power comes at a price. The program that draws the page must be written.
Usually this program is generated by application software, so the process is invisible to the user.

Inexpensive printers sometimes leave out PostScript® compatibility as a cost-saving measure.

PCL (Printer Command Language)

PCL is an extension of ASCII, adding escape sequences for formatting, font selection, and printing
graphics. Many printers provide PCL5 support. Some support the newer PCL6 or PCLXL. These later
versions are supersets of PCL5 and can provide faster printing.

Host-Based

Manufacturers can reduce the cost of a printer by giving it a simple processor and very little
memory. These printers are not capable of printing plain text. Instead, bitmaps of text and

227

graphics are drawn by a driver on the host computer and then sent to the printer. These are
called host-based printers.

Communication between the driver and a host-based printer is often through proprietary or
undocumented protocols, making them functional only on the most common operating systems.

9.3.1. Converting PostScript® to Other PDLs

Many applications from the Ports Collection and FreeBSD utilities produce PostScript® output. This
table shows the utilities available to convert that into other common PDLs:

Table 9. Output PDLs

Output PDL Generated By Notes

PCL or PCL5 print/ghostscript9-base -sDEVICE=1jet4 for
monochrome, -sDEVICE=cljeth
for color

PCLXL or PCL6 print/ghostscript9-base -sDEVICE=px1mono for
monochrome,

-sDEVICE=px1lcolor for color
ESC/P2 print/ghostscriptg_base —SDEVICE:uniprint

XQxX print/foo2zjs

9.3.2. Summary

For the easiest printing, choose a printer that supports PostScript®. Printers that support PCL are
the next preferred. With print/ghostscript9-base, these printers can be used as if they understood
PostScript® natively. Printers that support PostScript® or PCL directly almost always support direct
printing of plain ASCII text files also.

Line-based printers like typical inkjets usually do not support PostScript® or PCL. They often can
print plain ASCII text files. print/ghostscript9-base supports the PDLs used by some of these
printers. However, printing an entire graphic-based page on these printers is often very slow due to
the large amount of data to be transferred and printed.

Host-based printers are often more difficult to set up. Some cannot be used at all because of
proprietary PDLs. Avoid these printers when possible.

Descriptions of many PDLs can be found at http:/www.undocprint.org/formats/
page_description_languages. The particular PDL used by various models of printers can be found at
http://www.openprinting.org/printers.

9.4. Direct Printing

For occasional printing, files can be sent directly to a printer device without any setup. For
example, a file called sample.txt can be sent to a USB printer:

228

https://cgit.freebsd.org/ports/tree/print/ghostscript9-base/pkg-descr
https://cgit.freebsd.org/ports/tree/print/ghostscript9-base/pkg-descr
https://cgit.freebsd.org/ports/tree/print/ghostscript9-base/pkg-descr
https://cgit.freebsd.org/ports/tree/print/foo2zjs/pkg-descr
https://cgit.freebsd.org/ports/tree/print/ghostscript9-base/pkg-descr
https://cgit.freebsd.org/ports/tree/print/ghostscript9-base/pkg-descr
http://www.undocprint.org/formats/page_description_languages
http://www.undocprint.org/formats/page_description_languages
http://www.openprinting.org/printers

cp sample.txt /dev/unlpt@

Direct printing to network printers depends on the abilities of the printer, but most accept print
jobs on port 9100, and nc(1) can be used with them. To print the same file to a printer with the DNS
hostname of netlaser:

nc netlaser 9100 < sample.txt

9.5. LPD (Line Printer Daemon)

Printing a file in the background is called spooling. A spooler allows the user to continue with other
programs on the computer without waiting for the printer to slowly complete the print job.

FreeBSD includes a spooler called Ipd(8). Print jobs are submitted with Ipr(1).

9.5.1. Initial Setup

A directory for storing print jobs is created, ownership is set, and the permissions are set to prevent
other users from viewing the contents of those files:

mkdir -p /var/spool/lpd/1p
chown daemon:daemon /var/spool/1pd/1p
chmod 770 /var/spool/lpd/1p

Printers are defined in /etc/printcap. An entry for each printer includes details like a name, the port
where it is attached, and various other settings. Create /etc/printcap with these contents:

1p:\ @
:1p=/dev/unlpto:\ @
:shi\ ®
:mx#0:\ @

:sd=/var/spool/1pd/1p:\ ®
:1f=/var/log/1pd-errs: ®

@® The name of this printer. Ipr(1) sends print jobs to the 1p printer unless another printer is
specified with -P, so the default printer should be named 1p.

@ The device where the printer is connected. Replace this line with the appropriate one for the
connection type shown here.

® Suppress the printing of a header page at the start of a print job.
@ Do not limit the maximum size of a print job.
® The path to the spooling directory for this printer. Each printer uses its own spooling directory.

® The log file where errors on this printer will be reported.

229

https://www.freebsd.org/cgi/man.cgi?query=nc&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpr&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpr&sektion=1&format=html

After creating /etc/printcap, use chkprintcap(8) to test it for errors:
chkprintcap

Fix any reported problems before continuing.

Enable Ipd(8) in /etc/rc.conf:
1pd_enable="YES"
Start the service:

service 1lpd start

9.5.2. Printing with Ipr(1)

Documents are sent to the printer with 1pr. A file to be printed can be named on the command line
or piped into lpr. These two commands are equivalent, sending the contents of doc.txt to the
default printer:

% lpr doc.txt
% cat doc.txt | 1pr

Printers can be selected with -P. To print to a printer called laser:

% lpr -Plaser doc.txt

9.5.3. Filters

The examples shown so far have sent the contents of a text file directly to the printer. As long as the
printer understands the content of those files, output will be printed correctly.

Some printers are not capable of printing plain text, and the input file might not even be plain text.

Filters allow files to be translated or processed. The typical use is to translate one type of input, like
plain text, into a form that the printer can understand, like PostScript® or PCL. Filters can also be
used to provide additional features, like adding page numbers or highlighting source code to make
it easier to read.

The filters discussed here are input filters or text filters. These filters convert the incoming file into
different forms. Use su(1) to become root before creating the files.

Filters are specified in /etc/printcap with the if= identifier. To use /usr/local/libexec/lf2crlf as a
filter, modify /etc/printcap like this:

230

https://www.freebsd.org/cgi/man.cgi?query=chkprintcap&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpr&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=su&sektion=1&format=html

:1p=/dev/unlpt@:\

:sh:\

imx#0:\

:sd=/var/spool/1pd/1p:\
:if=/usr/local/libexec/1f2cr1f:\ @
:1f=/var/log/1pd-errs:

@ if= identifies the input filter that will be used on incoming text.
The backslash line continuation characters at the end of the lines in printcap
entries reveal that an entry for a printer is really just one long line with entries

delimited by colon characters. An earlier example can be rewritten as a single less-
(r) readable line:

1p:1p=/dev/unlpt@:sh:mx#0:sd=/var/spool/1pd/1p:if=/usr/local/libexec/1f
2crlf:1f=/var/log/1pd-errs:

9.5.3.1. Preventing Stairstepping on Plain Text Printers

Typical FreeBSD text files contain only a single line feed character at the end of each line. These
lines will "stairstep” on a standard printer:

A printed file looks
like the steps of a staircase
scattered by the wind

A filter can convert the newline characters into carriage returns and newlines. The carriage returns
make the printer return to the left after each line. Create /usr/local/libexec/lf2crlf with these
contents:

#!/bin/sh
CR=$"'\r'
/usr/bin/sed -e "s/$/${CR}/q"

Set the permissions and make it executable:
chmod 555 /usr/local/libexec/1f2crlf
Modify /etc/printcap to use the new filter:

:if=/usr/local/libexec/1f2crlf:\

231

Test the filter by printing the same plain text file. The carriage returns will cause each line to start
at the left side of the page.

9.5.3.2. Fancy Plain Text on PostScript® Printers with print/enscript

GNUEnscript converts plain text files into nicely-formatted PostScript® for printing on PostScript®
printers. It adds page numbers, wraps long lines, and provides numerous other features to make
printed text files easier to read. Depending on the local paper size, install either print/enscript-letter
or print/enscript-a4 from the Ports Collection.

Create /usr/local/libexec/enscript with these contents:

#!/bin/sh
/usr/local/bin/enscript -o -

Set the permissions and make it executable:

chmod 555 /usr/local/libexec/enscript

Modify /etc/printcap to use the new filter:

:if=/usr/local/libexec/enscript:\

Test the filter by printing a plain text file.

9.5.3.3. Printing PostScript® to PCL Printers

Many programs produce PostScript® documents. However, inexpensive printers often only
understand plain text or PCL. This filter converts PostScript® files to PCL before sending them to the
printer.

Install the Ghostscript PostScript® interpreter, print/ghostscript9-base, from the Ports Collection.

Create /usr/local/libexec/ps2pcl with these contents:

#!/bin/sh
/usr/local/bin/gs -dSAFER -dNOPAUSE -dBATCH -q -sDEVICE=1jet4 -sOutputFile=- -

Set the permissions and make it executable:

chmod 555 /usr/local/libexec/ps2pcl

PostScript® input sent to this script will be rendered and converted to PCL before being sent on to
the printer.

232

https://cgit.freebsd.org/ports/tree/print/enscript/pkg-descr
https://cgit.freebsd.org/ports/tree/print/enscript-letter/pkg-descr
https://cgit.freebsd.org/ports/tree/print/enscript-a4/pkg-descr
https://cgit.freebsd.org/ports/tree/print/ghostscript9-base/pkg-descr

Modify /etc/printcap to use this new input filter:

:if=/usr/local/libexec/ps2pcl:\

Test the filter by sending a small PostScript® program to it:

% printf "%%\!PS \n /Helvetica findfont 18 scalefont setfont \
72 432 moveto (PostScript printing successful.) show showpage \004" | 1pr

9.5.3.4. Smart Filters

A filter that detects the type of input and automatically converts it to the correct format for the
printer can be very convenient. The first two characters of a PostScript® file are usually %!. A filter
can detect those two characters. PostScript® files can be sent on to a PostScript® printer
unchanged. Text files can be converted to PostScript® with Enscript as shown earlier. Create
/usr/local/libexec/psif with these contents:

#!/bin/sh

#

psif - Print PostScript or plain text on a PostScript printer
#

IFS="" read -r first line
first_two_chars="expr "$first_line" : "\(..\)"*

case "$first_two_chars" in

%!)
%! : PostScript job, print it.
echo "$first_line" && cat &§ exit @

exit 2
*) 1
otherwise, format with enscript
(echo "$first_line"; cat) | /usr/local/bin/enscript -o - && exit 0
exit 2
esac

Set the permissions and make it executable:

chmod 555 /usr/local/libexec/psif

Modify /etc/printcap to use this new input filter:

:1f=/usr/local/libexec/psif:\

233

Test the filter by printing PostScript® and plain text files.

9.5.3.5. Other Smart Filters

Writing a filter that detects many different types of input and formats them correctly is challenging.
print/apsfilter from the Ports Collection is a smart "magic" filter that detects dozens of file types and
automatically converts them to the PDL understood by the printer. See http://www.apsfilter.org for
more details.

9.5.4. Multiple Queues

The entries in /etc/printcap are really definitions of queues. There can be more than one queue for a
single printer. When combined with filters, multiple queues provide users more control over how
their jobs are printed.

As an example, consider a networked PostScript® laser printer in an office. Most users want to
print plain text, but a few advanced users want to be able to print PostScript® files directly. Two
entries can be created for the same printer in /etc/printcap:

textprinter:\
:1p=9100@officelaser:\
:sh:\
:mx#0:\
:sd=/var/spool/1pd/textprinter:\
:1f=/usr/local/libexec/enscript:\
:1f=/var/log/1pd-errs:

psprinter:\
:1p=9100@officelaser:\
:sh:\
:mx#0:\
:sd=/var/spool/1lpd/psprinter:\
:1f=/var/log/1pd-errs:

Documents sent to textprinter will be formatted by the /usr/local/libexec/enscript filter shown in an
earlier example. Advanced users can print PostScript® files on psprinter, where no filtering is
done.

This multiple queue technique can be used to provide direct access to all kinds of printer features.
A printer with a duplexer could use two queues, one for ordinary single-sided printing, and one
with a filter that sends the command sequence to enable double-sided printing and then sends the
incoming file.

9.5.5. Monitoring and Controlling Printing

Several utilities are available to monitor print jobs and check and control printer operation.

234

https://cgit.freebsd.org/ports/tree/print/apsfilter/pkg-descr
http://www.apsfilter.org

9.5.5.1. Ipq(1)

Ipq(1) shows the status of a user’s print jobs. Print jobs from other users are not shown.

Show the current user’s pending jobs on a single printer:

% lpg -Plp
Rank Owner Job Files Total Size
Tst jsmith 0 (standard input) 12792 bytes

Show the current user’s pending jobs on all printers:

% lpq -a

1p:

Rank Owner Job Files Total Size
1st jsmith 1 (standard input) 27320 bytes
laser:

Rank Owner Job Files Total Size
1st jsmith 287 (standard input) 22443 bytes

9.5.5.2. Iprm(1)

Iprm(1) is used to remove print jobs. Normal users are only allowed to remove their own jobs. root
can remove any or all jobs.

Remove all pending jobs from a printer:

lprm -Plp -

dfA002smithy dequeued
cfA@@2smithy dequeued
dfA003smithy dequeued
cfA003smithy dequeued
dfA004smithy dequeued
cfA004smithy dequeued

Remove a single job from a printer. Ipq(1) is used to find the job number.

% 1pq
Rank Owner Job Files Total Size
1st jsmith 5 (standard input) 12188 bytes

% lprm -P1p 5
dfA@@5smithy dequeued
cfA005smithy dequeued

235

https://www.freebsd.org/cgi/man.cgi?query=lpq&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpq&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lprm&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lprm&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpq&sektion=1&format=html

9.5.5.3. Ipc(8)

Ipc(8) is used to check and modify printer status. 1pc is followed by a command and an optional
printer name. all can be used instead of a specific printer name, and the command will be applied
to all printers. Normal users can view status with Ipc(8). Only root can use commands which
modify printer status.

Show the status of all printers:

% lpc status all

1p:
queuing is enabled
printing is enabled
1 entry in spool area
printer idle

laser:
queuing is enabled
printing is enabled
1 entry in spool area
waiting for laser to come up

Prevent a printer from accepting new jobs, then begin accepting new jobs again:

1pc disable 1p
1p:
queuing disabled
1pc enable 1p
lp:
queuing enabled

Stop printing, but continue to accept new jobs. Then begin printing again:

lpc stop 1p
1p:
printing disabled
lpc start 1p
1p:
printing enabled
daemon started

Restart a printer after some error condition:

236

https://www.freebsd.org/cgi/man.cgi?query=lpc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpc&sektion=8&format=html

lpc restart 1p

1p:
no daemon to abort
printing enabled
daemon restarted

Turn the print queue off and disable printing, with a message to explain the problem to users:

1pc down 1p Repair parts will arrive on Monday

lp:
printer and queuing disabled
status message is now: Repair parts will arrive on Monday

Re-enable a printer that is down:

lpc up 1p

1p:
printing enabled
daemon started

See Ipc(8) for more commands and options.

9.5.6. Shared Printers

Printers are often shared by multiple users in businesses and schools. Additional features are
provided to make sharing printers more convenient.

9.5.6.1. Aliases

The printer name is set in the first line of the entry in /etc/printcap. Additional names, or aliases,
can be added after that name. Aliases are separated from the name and each other by vertical bars:

1p|repairsprinter|salesprinter:\

Aliases can be used in place of the printer name. For example, users in the Sales department print
to their printer with

% lpr -Psalesprinter sales-report.txt

Users in the Repairs department print to their printer with

% 1pr -Prepairsprinter repairs-report.txt

237

https://www.freebsd.org/cgi/man.cgi?query=lpc&sektion=8&format=html

All of the documents print on that single printer. When the Sales department grows enough to need
their own printer, the alias can be removed from the shared printer entry and used as the name of
a new printer. Users in both departments continue to use the same commands, but the Sales
documents are sent to the new printer.

9.5.6.2. Header Pages

It can be difficult for users to locate their documents in the stack of pages produced by a busy
shared printer. Header pages were created to solve this problem. A header page with the user name
and document name is printed before each print job. These pages are also sometimes called banner
or Separator pages.

Enabling header pages differs depending on whether the printer is connected directly to the
computer with a USB, parallel, or serial cable, or is connected remotely over a network.

Header pages on directly-connected printers are enabled by removing the :sh:\ (Suppress Header)
line from the entry in /etc/printcap. These header pages only use line feed characters for new lines.
Some printers will need the /usr/share/examples/printing/hpif filter to prevent stairstepped text.
The filter configures PCL printers to print both carriage returns and line feeds when a line feed is
received.

Header pages for network printers must be configured on the printer itself. Header page entries in
/etc/printcap are ignored. Settings are usually available from the printer front panel or a
configuration web page accessible with a web browser.

9.5.7. References
Example files: /usr/share/examples/printing/.
The 4.3BSD Line Printer Spooler Manual, /usr/share/doc/smm/07.1pd/paper.ascii.gz.

Manual pages: printcap(5), Ipd(8), lpr(1), Ipc(8), Iprm(1), Ipq(1).

9.6. Other Printing Systems

Several other printing systems are available in addition to the built-in Ipd(8). These systems offer
support for other protocols or additional features.

9.6.1. CUPS (Common UNIX® Printing System)

CUPS is a popular printing system available on many operating systems. Using CUPS on FreeBSD is
documented in a separate article: CUPS

9.6.2. HPLIP

Hewlett Packard provides a printing system that supports many of their inkjet and laser printers.
The port is print/hplip. The main web page is at https://developers.hp.com/hp-linux-imaging-and-
printing. The port handles all the installation details on FreeBSD. Configuration information is
shown at https://developers.hp.com/hp-linux-imaging-and-printing/install.

238

https://www.freebsd.org/cgi/man.cgi?query=printcap&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpr&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=lprm&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpq&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=lpd&sektion=8&format=html
https://docs.freebsd.org/en/articles/cups/
https://cgit.freebsd.org/ports/tree/print/hplip/pkg-descr
https://developers.hp.com/hp-linux-imaging-and-printing
https://developers.hp.com/hp-linux-imaging-and-printing
https://developers.hp.com/hp-linux-imaging-and-printing/install

9.6.3. LPRng

LPRng was developed as an enhanced alternative to Ipd(8). The port is sysutils/LPRng. For details
and documentation, see http://www.lprng.com/.

239

https://www.freebsd.org/cgi/man.cgi?query=lpd&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/sysutils/LPRng/pkg-descr
http://www.lprng.com/

Chapter 10. Linux Binary Compatibility

10.1. Synopsis

FreeBSD provides optional binary compatibility with Linux®, allowing users to install and run
unmodified Linux binaries. It is available for the i386, amd64, and arm64 architectures.

Some Linux-specific operating system features are not yet supported; this mostly happens with
functionality specific to hardware or related to system management, such as cgroups or
namespaces.

After reading this chapter, you will know:

* How to enable Linux binary compatibility on a FreeBSD system.
* How to install additional Linux shared libraries.
* How to install Linux applications on a FreeBSD system.

* The implementation details of Linux compatibility in FreeBSD.
Before reading this chapter, you should:

* Know how to install additional third-party software.

10.2. Configuring Linux Binary Compatibility

By default, Linux binary compatibility is not enabled. To enable it at boot time, add this line to
/etc/rc.conf:

linux_enable="YES"
Once enabled, it can be started without rebooting by running:
service linux start

The /etc/rc.d/linux script will load necessary kernel modules and mount filesystems expected by
Linux applications under /compat/linux. This is enough for statically linked Linux binaries to work.
They can be started in the same way native FreeBSD binaries can; they behave almost exactly like
native processes and can be traced and debugged the usual way.

Linux binaries linked dynamically (which is the vast majority) also require Linux shared libraries
to be installed - they can run on top of the FreeBSD kernel, but they cannot use FreeBSD libraries;
this is similar to how 32-bit binaries cannot use native 64-bit libraries. There are several ways of
providing those libraries: one can copy them over from an existing Linux installation using the
same architecture, install them from FreeBSD packages, or install using debootstrap(8) (from
sysutils/debootstrap), and others.

240

../ports/index.html#ports
https://www.freebsd.org/cgi/man.cgi?query=debootstrap&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/sysutils/debootstrap/pkg-descr

10.3. CentOS Base System from FreeBSD Packages
o This method is not yet available for arm64.

The easiest way to install Linux libraries is to install emulators/linux base-c7 package or port,
which places the CentOS 7-derived base system into /compat/linux:

pkg install linux_base-c7

FreeBSD provides packages for some Linux binary applications. For example, to install Sublime
Text 4, along with all the Linux libraries it depends on, run this command:

pkg install linux-sublime-text4

10.4. Debian / Ubuntu Base System with debootstrap(8)

An alternative way of providing Linux shared libraries is by using sysutils/debootstrap. This has the
advantage of providing a full Debian or Ubuntu distribution. To use it, follow the instructions at
FreeBSD Wiki: FreeBSD Wiki - Linux Jails.

After debootstrapping, chroot(8) into the newly created directory and install software in a way
typical for the Linux distribution inside, for example:

chroot /compat/ubuntu /bin/bash
root@hostname:/# apt update

It is possible to debootstrap into /compat/linux, but it is discouraged to avoid collisions with files
installed from FreeBSD ports and packages. Instead, derive the directory name from the
distribution or version name, e.g., /compat/ubuntu. If the bootstrapped instance is intended to
provide Linux shared libraries without having to explicitly use chroot or jails, one can point the
kernel at it by updating the compat.linux.emul_path sysctl and adding a line like this to
[etc/sysctl.conf:

compat.linux.emul_path="/compat/ubuntu"

This sysctl controls the kernel’s path translation mechanism; see linux(4) for details. Please note
that changing it might cause trouble for Linux applications installed from FreeBSD packages; one
reason is that many of those applications are still 32-bit, while Ubuntu seems to be deprecating 32-
bit library support.

10.5. Advanced Topics

The Linux compatibility layer is a work in progress. Consult FreeBSD Wiki - Linuxulator for more

241

https://cgit.freebsd.org/ports/tree/emulators/linux_base-c7/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=debootstrap&sektion=8&format=html
https://cgit.freebsd.org/ports/tree/sysutils/debootstrap/pkg-descr
https://wiki.freebsd.org/LinuxJails
https://www.freebsd.org/cgi/man.cgi?query=chroot&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=linux&sektion=4&format=html
https://wiki.freebsd.org/Linuxulator

information.
A list of all Linux-related sysctl(8) knobs can be found in linux(4).

Some applications require specific filesystems to be mounted. This is normally handled by the
[etc/rc.d/linux script, but can be disabled by adding this line to /etc/rc.conf:

1linux_mounts_enable="NQ"

Filesystems mounted by the rc script will not work for Linux processes inside chroots or jails; if
needed, configure them in /etc/fstab:

devfs /compat/linux/dev devfs rw, Late 0 0
tmpfs /compat/linux/dev/shm tmpfs rw,late,size=1g,mode=1777 0@ @
fdescfs /compat/linux/dev/fd fdescfs rw,late,linrdlnk 0 0
linprocfs /compat/linux/proc linprocfs rw,late 0 0
linsysfs /compat/linux/sys linsysfs rw,late 0 0

Since the Linux binary compatibility layer has gained support for running both 32- and 64-bit Linux
binaries (on 64-bit x86 hosts), it is no longer possible to link the emulation functionality statically
into a custom kernel.

10.5.1. Installing Additional Libraries Manually

o For base system subdirectories created with debootstrap(8), use the instructions
above instead.

If a Linux application complains about missing shared libraries after configuring Linux binary
compatibility, determine which shared libraries the Linux binary needs and install them manually.

From a Linux system using the same CPU architecture, 1dd can be used to determine which shared
libraries the application needs. For example, to check which shared libraries linuxdoom needs, run
this command from a Linux system that has Doom installed:

% 1dd linuxdoom

1ibXt.so0.3 (DLL Jump 3.1) => /usr/X11/1ib/1ibXt.s0.3.1.0
1ibX11.s0.3 (DLL Jump 3.1) => /usr/X11/1ib/1ibX11.s0.3.1.0
libc.so.4 (DLL Jump 4.5p126) => /1ib/1libc.s0.4.6.29

Then, copy all the files in the last column of the output from the Linux system into /compat/linux on
the FreeBSD system. Once copied, create symbolic links to the names in the first column. This
example will result in the following files on the FreeBSD system:

242

https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=linux&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=debootstrap&sektion=8&format=html

/compat/linux/usr/X11/1ib/1ibXt.s0.3.1.0
/compat/Llinux/usr/X11/1ib/1ibXt.s0.3 -> 1ibXt.s0.3.1.0
/compat/Tlinux/usr/X11/1ib/1ibX11.s0.3.1.0
/compat/linux/usr/X11/1ib/1ibX11.s0.3 -> 1ibX11.50.3.1.0
/compat/linux/1ib/1ibc.s0.4.6.29
/compat/linux/1ib/libc.so0.4 -> 1libc.s0.4.6.29

If a Linux shared library already exists with a matching major revision number to the first column
of the 1dd output, it does not need to be copied to the file named in the last column, as the existing
library should work. It is advisable to copy the shared library if it is a newer version, though. The
old one can be removed, as long as the symbolic link points to the new one.

For example, these libraries already exist on the FreeBSD system:

/compat/linux/1ib/libc.s0.4.6.27
/compat/linux/1ib/1libc.so.4 -> 1libc.so0.4.6.27

and 1dd indicates that a binary requires a later version:
libc.so.4 (DLL Jump 4.5p126) -> libc.s0.4.6.29

Since the existing library is only one or two versions out of date in the last digit, the program
should still work with the slightly older version. However, it is safe to replace the existing libc.so
with the newer version:

/compat/linux/1ib/1libc.s0.4.6.29
/compat/linux/1lib/libc.so.4 -> 1libc.s0.4.6.29

Generally, one will need to look for the shared libraries that Linux binaries depend on only the first
few times that a Linux program is installed on FreeBSD. After a while, there will be a sufficient set
of Linux shared libraries on the system to be able to run newly installed Linux binaries without any
extra work.

10.5.2. Branding Linux ELF Binaries

The FreeBSD kernel uses several methods to determine if the binary to be executed is a Linux one:
it checks the brand in the ELF file header, looks for known ELF interpreter paths and checks ELF
notes; finally, by default, unbranded ELF executables are assumed to be Linux anyway. Should all
those methods fail, an attempt to execute the binary might result in error message:

% ./my-linux-elf-binary
ELF binary type not known
Abort

243

To help the FreeBSD kernel distinguish between a FreeBSD ELF binary and a Linux binary, use
brandelf(1):

% brandelf -t Linux my-linux-elf-binary

10.5.3. Installing a Linux RPM Based Application
To install a Linux RPM-based application, first install the archivers/rpm4 package or port. Once

installed, root can use this command to install a .rpm:

cd /compat/linux
rpm2cpio < /path/to/linux.archive.rpm | cpio -id

If necessary, brandelf the installed ELF binaries. Note that this will prevent a clean uninstall.

10.5.4. Configuring the Hostname Resolver

If DNS does not work or this error appears:

resolv+: "bind" is an invalid keyword resolv+:
"hosts" 1is an invalid keyword

configure /compat/linux/etc/host.conf as follows:

order hosts, bind
multi on

This specifies that /etc/hosts is searched first and DNS is searched second. When
/compat/linux/etc/host.conf does not exist, Linux applications use /etc/host.conf and complain about
the incompatible FreeBSD syntax. Remove bind if a name server is not configured using
/etc/resolv.conf.

10.5.5. Miscellaneous

This section describes how Linux binary compatibility works and is based on an email written to
FreeBSD chat mailing list by Terry Lambert tlambert@primenet.com (Message ID:
<199906020108.SAA07001@usr@9.primenet.com>).

FreeBSD has an abstraction called an "execution class loader". This is a wedge into the execve(2)
system call.

Historically, the UNIX® loader examined the magic number (generally the first 4 or 8 bytes of the
file) to see if it was a binary known to the system, and if so, invoked the binary loader.

If it was not the binary type for the system, the execve(2) call returned a failure, and the shell

244

https://www.freebsd.org/cgi/man.cgi?query=brandelf&sektion=1&format=html
https://cgit.freebsd.org/ports/tree/archivers/rpm4/pkg-descr
https://lists.FreeBSD.org/subscription/freebsd-chat
mailto:tlambert@primenet.com
mailto:199906020108.SAA07001@usr09.primenet.com
https://www.freebsd.org/cgi/man.cgi?query=execve&sektion=2&format=html
https://www.freebsd.org/cgi/man.cgi?query=execve&sektion=2&format=html

attempted to start executing it as shell commands. The assumption was a default of "whatever the
current shell is".

Later, a hack was made for sh(1) to examine the first two characters, and if they were :\n, it
invoked the csh(1) shell instead.

FreeBSD has a list of loaders, instead of a single loader, with a fallback to the #! loader for running
shell interpreters or shell scripts.

For the Linux ABI support, FreeBSD sees the magic number as an ELF binary. The ELF loader looks
for a specialized brand, which is a comment section in the ELF image, and which is not present on
SVR4/Solaris™ ELF binaries.

For Linux binaries to function, they must be branded as type Linux using brandelf(1):

brandelf -t Linux file

When the ELF loader sees the Linux brand, the loader replaces a pointer in the proc structure. All
system calls are indexed through this pointer. In addition, the process is flagged for special
handling of the trap vector for the signal trampoline code, and several other (minor) fix-ups that
are handled by the Linux kernel module.

The Linux system call vector contains, among other things, a list of sysent[] entries whose
addresses reside in the kernel module.

When a system call is called by the Linux binary, the trap code dereferences the system call
function pointer off the proc structure, and gets the Linux, not the FreeBSD, system call entry
points.

Linux mode dynamically reroots lookups. This is, in effect, equivalent to union to file system
mounts. First, an attempt is made to look up the file in /compat/linux/original-path. If that fails, the
lookup is done in /original-path. This makes sure that binaries that require other binaries can run.
For example, the Linux toolchain can all run under Linux ABI support. It also means that the Linux
binaries can load and execute FreeBSD binaries, if there are no corresponding Linux binaries
present, and that a uname(1) command can be placed in the /compat/linux directory tree to ensure
that the Linux binaries cannot tell they are not running on Linux.

In effect, there is a Linux kernel in the FreeBSD kernel. The various underlying functions that
implement all of the services provided by the kernel are identical to both the FreeBSD system call
table entries, and the Linux system call table entries: file system operations, virtual memory
operations, signal delivery, and System V IPC. The only difference is that FreeBSD binaries get the
FreeBSD glue functions, and Linux binaries get the Linux glue functions. The FreeBSD glue
functions are statically linked into the kernel, and the Linux glue functions can be statically linked,
or they can be accessed via a kernel module.

Technically, this is not really emulation, it is an ABI implementation. It is sometimes called "Linux
emulation” because the implementation was done at a time when there was no other word to
describe what was going on. Saying that FreeBSD ran Linux binaries was not true, since the code
was not compiled in.

245

https://www.freebsd.org/cgi/man.cgi?query=sh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=csh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=brandelf&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=uname&sektion=1&format=html

Chapter 11. WINE

11.1. Synopsis

WINE, which stands for Wine Is Not an Emulator, is technically a software translation layer. It
enables to install and run some software written for Windows® on FreeBSD (and other) systems.

It operates by intercepting system calls, or requests from the software to the operating system, and
translating them from Windows® calls to calls that FreeBSD understands. It will also translate any
responses as needed into what the Windows® software is expecting. So in some ways, it emulates a
Windows® environment, in that it provides many of the resources Windows® applications are
expecting.

However, it is not an emulator in the traditional sense. Many of these solutions operate by
constructing an entire other computer using software processes in place of hardware Virtualization
(such as that provided by the emulators/gemu port) operates in this way. One of the benefits of this
approach is the ability to install a full version of the OS in question to the emulator. It means that
the environment will not look any different to applications than a real machine, and chances are
good that everything will work on it. The downside to this approach is the fact that software acting
as hardware is inherently slower than actual hardware. The computer built in software (called the
guest) requires resources from the real machine (the host), and holds on to those resources for as
long as it is running.

The WINE Project, on the other hand, is much lighter on system’s resources. It will translate system
calls on the fly, so while it is difficult to be as fast as a real Windows® computer, it can come very
close. On the other hand, WINE is trying to keep up with a moving target in terms of all the
different system calls and other functionality it needs to support. As a result there may be
applications that do not work as expected on WINE, will not work at all, or will not even install to
begin with.

At the end of the day, WINE provides another option to try to get a particular Windows® software
program running on FreeBSD. It can always serve as the first option which, if successful, offers a
good experience without unnecessarily depleting the host FreeBSD system’s resources.

This chapter will describe:

* How to install WINE on a FreeBSD system.

How WINE operates, and how it is different from other alternatives like virtualizaton.
* How to fine-tune WINE to the specific needs of some applications.

* How to install GUI helpers for WINE.

* Common tips and solutions for on FreeBSD.

e Considerations for WINE on FreeBSD in terms of the multi-user environment.
Before reading this chapter, it will be useful to:

¢ Understand the basics of UNIX® and FreeBSD.

246

https://www.winehq.org/
https://cgit.freebsd.org/ports/tree/emulators/qemu/pkg-descr
../basics/index.html#basics

* Know how to install FreeBSD.
* Know how to set up a network connection.

* Know how to install additional third-party software.

11.2. WINE Overview & Concepts

WINE is a complex system, so before running it on a FreeBSD system it is worth gaining an
understanding of what it is and how it works.

11.2.1. What is WINE?

As mentioned in the Synopsis for this chapter, WINE is a compatibility layer that allows Windows®
applications to run on other operating systems. In theory, it means these programs should run on
systems like FreeBSD, macOS, and Android.

When WINE runs a Windows® executable, two things occur:

* Firstly, WINE implements an environment that mimics that of various versions of Windows®.
For example, if an application requests access to a resource such as RAM, WINE has a memory
interface that looks and acts (as far as the application is concerned) like Windows®.

* Then, once that application makes use of that interface, WINE takes the incoming request for
space in memory and translates it to something compatible with the host system. In the same
way when the application retrieves that data, WINE facilitates fetching it from the host system
and passing it back to the Windows® application.

11.2.2. WINE and the FreeBSD System
Installing WINE on a FreeBSD system will entail a few different components:
* FreeBSD applications for tasks such as running the Windows® executables, configuring the

WINE sub-system, or compiling programs with WINE support.

* A large number of libraries that implement the core functions of Windows® (for example
/lib/wine/api-ms-core-memory-11-1-1.dll.so, which is part of the aforementioned memory
interface).

e A number of Windows® executables, which are (or mimic) common utilities (such as
/lib/wine/notepad.exe.so, which provides the standard Windows® text editor).

* Additional Windows® assets, in particular fonts (like the Tahoma font, which is stored in
share/wine/fonts/tahoma.ttf in the install root).

11.2.3. Graphical Versus Text Mode/Terminal Programs in WINE

As an operating system where terminal utilities are "first-class citizens," it is natural to assume that
WINE will contain extensive support for text-mode program. However, the majority of applications
for Windows®, especially the most popular ones, are designed with a graphical user interface (GUI)
in mind. Therefore, WINE’s utilities are designed by default to launch graphical programs.

247

../bsdinstall/index.html#bsdinstall
../advanced-networking/index.html#advanced-networking
../ports/index.html#ports

However, there are three methods available to run these so-called Console User Interface (CUI)
programs:

* The Bare Streams approach will display the output directly to standard output.

» The wineconsole utility can be used with either the user or curses backed to utilize some of the
enhancements the WINE system provides for CUI applications.

These approaches are described in greater detail on the WINE Wiki.

11.2.4. WINE Derivative Projects

WINE itself is a mature open source project, so it is little surprise it is used as the foundation of
more complex solutions.

11.2.4.1. Commercial WINE Implementations

A number of companies have taken WINE and made it a core of their own, proprietary products
(WINE’s LGPL license permits this). Two of the most famous of these are as follows:

e Codeweavers CrossOver

This solution provides a simplified "one-click" installation of WINE, which contains additional
enhancements and optimizations (although the company contributes many of these back upstream
to the WINE project). One area of focus for Codeweavers is to make the most popular applications
install and run smoothly.

While the company once produced a native FreeBSD version of their CrossOver solution, it appears
to have long been abandoned. While some resources (such as a dedicated forum) are still present,
they also have seen no activity for some time.

e Steam Proton

Gaming company Steam also uses WINE to enable Windows® games to install and run on other
systems. it is primary target is Linux-based systems, though some support exists for macOS as well.

While Steam does not offer a native FreeBSD client,there are several options for using the Linux®
client using FreeBSD’s Linux Compatibility Layer.

11.2.4.2. WINE Companion Programs

In addition to proprietary offerings, other projects have released applications designed to work in
tandem with the standard, open source version of WINE. The goals for these can range from
making installation easier to offering easy ways to get popular software installed.

These solutions are covered in greater detail in the later section on GUI frontends, and include the
following:

e winetricks

e Homura

248

https://wiki.winehq.org/Wine_User%27s_Guide#Text_mode_programs_.28CUI:_Console_User_Interface.29
https://www.codeweavers.com/compatibility/crossover/forum/freebsd

11.2.5. Alternatives to WINE
For FreeBSD users, some alternatives to using WINE are as follows:

* Dual-Booting: A straightforward option is to run desired Windows® applications natively on
that OS. This of course means exiting FreeBSD in order to boot Windows®, so this method is not
feasible if access to programs in both systems is required simultaneously.

» Virtual Machines: Virtual Machines (VMs), as mentioned earlier in this chapter, are software
processes that emulate full sets of hardware, on which additional operating systems (including
Windows®) can be installed and run. Modern tools make VMs easy to create and manage, but
this method comes at a cost. A good portion of the host systems resources must be allocated to
each VM, and those resources cannot be reclaimed by the host as long as the VM is running. A
few examples of VM managers include the open source solutions gemu, bhyve, and VirtualBox.
See the chapter on Virtualization for more detail.

* Remote Access: Like many other UNIX®-like systems, FreeBSD can run a variety of applications
enabling users to remotely access Windows® computers and use their programs or data. In
addtion to clients such as xrdp that connect to the standard Windows® Remote Desktop
Protocol, other open source standards such as vnc can also be used (provided a compatible
server is present on the other side).

11.3. Installing WINE on FreeBSD

WINE can be installed via the pkg tool, or by compiling the port(s).

11.3.1. WINE Prerequistes

Before installing WINE itself, it is useful to have the following pre-requisites installed.
* A GUI

Most Windows® programs are expecting to have a graphical user interface available. If WINE is
installed without one present, its dependencies will include the Wayland compositor, and so a GUI
will be installed along with WINE. But it is useful to have the GUI of choice installed, configured,
and working correctly before installing WINE.

* wine-gecko

The Windows® operating system has for some time had a default web browser pre-installed:
Internet Explorer. As a result, some applications work under the assumption that there will always
be something capable of displaying web pages. In order to provide this functionality, the WINE
layer includes a web browser component using the Mozilla project’s Gecko engine. When WINE is
first launched it will offer to download and install this, and there are reasons users might want it
do so (these will be covered in a later chapter). But they can also install it prior to installing WINE,
or alongside the install of WINE proper.

Install this package with the following:

249

pkg install wine-gecko
Alternately, compile the port with the following:

cd /usr/ports/emulator/wine-gecko
make install

¢ wine-mono

This port installs the MONO framework, an open source implementation of Microsoft’s .NET.
Including this with the WINE installation will make it that much more likely that any applications
written in .NET will install and run on the system.

To install the package:
pkg install wine-mono
To compile from the ports collection:

cd /usr/ports/emulator/wine-mono
make install

11.3.2. Installing WINE via FreeBSD Package Repositories

With the pre-requisites in place, install WINE via package with the following command:
pkg install wine
Alternately compile the WINE sub-system from source with the following:

cd /usr/ports/emulator/wine
make install

11.3.3. Concerns of 32- Versus 64-Bit in WINE Installations

Like most software, Windows® applications made the upgrade from the older 32-bit architecture to
64 bits. And most recent software is written for 64-bit operating systems, although modern OSes can
sometimes continue to run older 32-bit programs as well. FreeBSD is no different, having had
support for 64-bit since the 5.x series.

However, using old software no longer supported by default is a common use for emulators, and
users commonly turn to WINE to play games and use other programs that do not run properly on
modern hardware. Fortunately, FreeBSD can support all three scenarios:

250

* On modern, 64-bit machine and want to run 64-bit Windows® software, simply install the ports
mentioned in the above sections. The ports system will automatically install the 64-bit version.

 Alternately, users might have an older 32-bit machine that they do not want to run with its
original, now non-supported software. They can install the 32-bit (i386) version of FreeBSD,
then install the ports in the above sections.

11.4. Running a First WINE Program on FreeBSD

Now that WINE is installed, the next step is to try it out by running a simple program. An easy way
to do this is to download a self-contained application, i.e., one can simply unpack and run without
any complex installation process.

So-called "portable" versions of applications are good choices for this test, as are programs that run
with only a single executable file.

11.4.1. Running a Program from the Command Line

There are two different methods to launch a Windows program from the terminal. The first, and
most straightforward is to navigate to the directory containing the program’s executable ((EXE) and
issue the following:

% wine program.exe

For applications that take command-line arguments, add them after the executable as usual:

%

s wine program2.exe -file file.txt
Alternately, supply the full path to the executable to use it in a script, for example:

% wine /home/user/bin/program.exe

11.4.2. Running a Program from a GUI

After installation graphical shells should be updated with new associations for Windows executable
(.EXE) files. It will now be possible to browse the system using a file manager, and launch the
Windows application in the same way as other files and programs (either a single- or double-click,
depending on the desktop’s settings).

On most desktops, check to make sure this association is correct by right-clicking on the file, and
looking for an entry in the context menu to open the file. One of the options (hopefully the default
one) will be with the Wine Windows Program Loader, as shown in the below screenshot:

251

File Edit View Go Bookmarks Tool Help
9 ¢ > 4 C mC 4| usr | home | aaron | bin | np++
Lists - updater userDefinela change.log config.xml
Places ngs
E& aaron
@ Desktop > = >
|E Computer :‘/ o9, :‘/) :‘/
= o contextMenu. dolocalConf. functionList.x langs.model.
(i) Applications xml xml mi xml
E= Network
Devices Gty
Bookmarks X | =, _EE
license.txt L3 Open exer.dll
' Open With... v | Wine Windows Program Loader
o Cut Other Applications
..,j;:]| ' Copy
shortcuts.xml stylers.| ¥ Delete
XN Rename
Extract to... -
"notepad++.exe" (...5/Windows executable xtractto : 14.5 GiB)
Extract Here
~#. Properties

In the event the program does not run as expected, try launching it from the command line and
review any messages displayed in the terminal to troubleshoot.

In the event WINE is not the default application for .EXE files after install, check the MIME associate
for this extension in the current desktop environment, graphical shell, or file manager.

11.5. Configuring WINE Installation

With an understanding of what WINE is and how it works at a high level, the next step to
effectively using it on FreeBSD is becoming familiar with its configuration. The following sections
will describe the key concept of the WINE prefix, and illustrate how it is used to control the
behavior of applications run through WINE.

11.5.1. WINE Prefixes

A WINE prefix is a directory, usually located beneath the default location of $HOME/.wine though it
can be located elsewhere. The prefix is a set of configurations and support files used by the wine to
configure and run the Windows® environment a given application needs. By default, a brand new
WINE installation will create the following structure when first launched by a user:

» .update-timestamp: contains the last modified date of file /usr/share/wine/wine.inf. It is used by
WINE to determine if a prefix is out of date, and automatically update it if needed.

* dosdevices/: contains information on mappings of Windows® resources to resources on the
host FreeBSD system. For example, after a new WINE installation, this should contain at least
two entries which enable access to the FreeBSD filesystem using Windows®-style drive letters:

o C:@: A link to drive_c described below.

o z:@: A link to the root directory of the system.

252

* drive_c/: emulates the main (i.e.,, C:) drive of a Windows® system. It contains a directory
structure and associated files mirroring that of standard Windows® systems. A fresh WINE
prefix will contain Windows® 10 directories such as Users and Windows that holds the OS itself.
Furthermore, applications installed within a prefix will be located in either Program Files or
Program Files (x86), depending on their architecture.

» system.reg: This Registry file contains information on the Windows® installation, which in the
case of WINE is the environment in drive_c.

 user.reg: This Registry file contains the current user’s personal configurations, made either by
varous software or through the use of the Registry Editor.

» userdef.reg: This Registry file is a default set of configurations for newly-created users.

11.5.2. Creating and Using WINE Prefixes

While WINE will create a default prefix in the user’s $HOME/.wine/, it is possible to set up multiple
prefixes. There are a few reasons to do this:

* The most common reason is to emulate different versions of Windows®, according to the
compatibility needs of the software in question.

* In addition, it is common to encounter software that does not work correctly in the default
environment, and requires special configuration. it is useful to isolate these in their own,
custom prefixes, so the changes do not impact other applications.

 Similarly, copying the default or "main" prefix into a separate "testing” one in order to evaluate
an application’s compatibility can reduce the chance of corruption.

Creating a prefix from the terminal requires the following command:
% WINEPREFIX="/home/username/.wine-new" winecfg

This will run the winecfg program, which can be used to configure wine prefixes (more on this in a
later section). But by providing a directory path value for the WINEPREFIX environment variable, a
new prefix is created at that location if one does not already exist.

Supplying the same variable to the wine program will similarly cause the selected program to be

run with the specified prefix:

% WINEPREFIX="/home/username/.wine-new" wine program.exe

11.5.3. Configuring WINE Prefixes with winecfg

As described above WINE includes a tool called winecfg to configure prefixes from within a GUL It
contains a variety of functions, which are detailed in the sections below. When winecfg is run from
within a prefix, or provided the location of a prefix within the WINEPREFIX variable, it enables the
configuration of the selected prefix as described in the below sections.

Selections made on the Applications tab will affect the scope of changes made in the Libraries and

253

Graphics tabs, which will be limited to the application selected. See the section on Using Winecfg in
the WINE Wiki for more details.

11.5.3.1. Applications

Wine configuration

Drives I Audio I About
Applications | Libraries I araphics I Desktop Integration

—application settings

Wine can mimic different \Windows versions for each application, This
kab is linked to the Libraries and Graphics tabs to allow wou to change
system-wide or per-application settings in those kabs as well,

add application. .. | Remoyve application |

Windows Yersion: I'-.-'-.-'in-:h:uws 7 j

(04 I Zancel | Apply |

The Applications contains controls enabling the association of programs with a particular version of
Windows®. On first start-up the Application settings section will contain a single entry: Default
Settings. This corresponds to all the default configurations of the prefix, which (as the disabled
Remove application button implies) cannot be deleted.

But additional applications can be added with the following process:

1. Click the Add application button.
2. Use the provided dialog to select the desired program’s executable.

3. Select the version of Windows® to be used with the selected program.

11.5.3.2. Libraries

254

https://wiki.winehq.org/Wine_User%27s_Guide#Using_Winecfg

Wine configuration

Drives | Audio I Abouk I

Applications § Libraries I izraphics I Deskbop Inkegration

~DLL overrides

Crymamic Link Libraries can be specified individually ko be either builtin
(provided by Wine) or native (taken From Windows or provided by the
application).

Mews override For library:
! = fdd |

Existing overrides:

Edit... |

Bemove |

O I Cancel Appli

WINE provides a set of open source library files as part of its distribution that provide the same
functions as their Windows® counterparts. However, as noted earlier in this chapter, the WINE
project is always trying to keep pace with new updates to these libraries. As a result, the versions
that ship with WINE may be missing functionality that the latest Windows® programs are
expecting.

However, winecfg makes it possible specify overrides for the built-in libraries, particularly there is a
version of Windows® available on the same machine as the host FreeBSD installation. For each
library to be overridden, do the following:

1. Open the New override for library drop-down and select the library to be replaced.

2. Click the Add button.

3. The new override will appear in the Existing overrides list, notice the native, builtin designation
in parentheses.

4. Click to select the library.
5. Click the Edit button.

6. Use the provided dialog to select a corresponding library to be used in place of the built-in one.

Be sure to select a file that is truly the corresponding version of the built-in one, otherwise there
may be unexpected behavior.

255

11.5.3.3. Graphics

Wine configuration

Drives I About I

Deskbop Integration

Applications I Libraries

—window settings

[aukomatically capture the mouse in full-screen windows
[allows the window manager to decorate the windows
I allow the window manager ko contraol the windows

[Emulate a virtual deskhop

Deskbap size: | a00 o [

—Screen resalukion
1)
J I A5 dpi

This is a sample text using 10 point Tahoma

Ik I Zancel Gpmly

The Graphics tab provides some options to make the windows of programs run via WINE operate
smoothly with FreeBSD:

Automatic mouse capture when windows are full-screen.

Allowing the FreeBSD window manager to decorate the windows, such as their title bars, for
programs running via WINE.

Allowing the window manager to control windows for programs running via WINE, such as
running resizing functions on them.

Create an emulated virtual desktop, within which all WINE programs will run. If this item is
selected, the size of the virtual desktop can be specified using the Desktop size input boxes.

Setting the screen resolution for programs running via WINE.

11.5.3.4. Desktop Integration

256

Wine configuration

Drives I Audio | About |
Applications I Libraries I igraphics | Deskbop Integration
—Appearance

Theme:

I{N-:u Theme) j Install theme. .. I
Colar: Sizes

| [. [~
Item: Color: Sige:

| g | s

—MIME tvpes
[Manage file associations

—Folders
Falder | Links ko ‘
Desktop [harmefaaroniDeskiop
My Documenks [home)aaronDocuments —
My Pickures [homefaaronDocuments
My Music [homefaaron/Documents -
4 |

| Link b I Browse, ., |
O I Cancel | Gppli |

This tab allows configuration of the following items:

» The theme and related visual settings to be used for programs running via WINE.

* Whether the WINE sub-system should manage MIME types (used to determine which
application opens a particular file type) internally.

* Mappings of directories in the host FreeBSD system to useful folders within the Windows®
environment. To change an existing association, select the desired item and click Browse, then
use the provided dialog to select a directory.

11.5.3.5. Drives

257

Wine configuration

Applications | Librarigs I Graphics I Desktop Integration
Drives I Audio I About

—Drrive configuration

Letter | Targek Folder |
C o Jdrive_c
z: !

add. .. | REmove Aukodetect |

Path: I - Jdrive_c Erawse, .. |

Show Adwvanced |

[shaw dat Files

(4 I Cancel Apply

The Drives tab allows linking of directories in the host FreeBSD system to drive letters in the
Windows® environment. The default values in this tab should look familiar, as they are displaying
the contents of dosdevices/ in the current WINE prefix. Changes made via this dialog will reflect in
dosdevices, and properly-formatted links created in that directory will display in this tab.

To create a new entry, such as for a CD-ROM (mounted at /mnt/cdrom), take the following steps:

1. Click the _Add _ button.

2. In the provided dialog, choose a free drive letter.
3. Click OK.
4

. Fill in the Path input box by either typing the path to the resource, or click _Browse _ and use
the provided dialog to select it.

By default WINE will autodetect the type of resource linked, but this can be manually overridden.
See the section in the WINE Wiki for more detail on advanced options.

11.5.3.6. Audio

258

https://wiki.winehq.org/Wine_User%27s_Guide#Drive_Settings

Wine configuration

Applications I Libraries | Graphics | Desktop Integration
Drives Audic I About

~Driver diagnostics
Selected driver: wineoss.dry

~Defaults
Cukput device: I{System default) j
Woice oukput device: I{System default) j
Input device: I{System default} j
Yoice input device: I{System default) j

Tesk Sound |

—Speaker configuration

Device | Speaker configuration
ks pernd: playdsp,pi Steren

Speakers: I j
| (4 I Cancel | Apply |

This tab contains some configurable options for routing sound from Windows® programs to the
native FreeBSD sound system, including:

e Driver selection
e Default device selection

e Sound test

11.5.3.7. About

259

Wine configuration

Applications I Libraries I Graphics I Deskkop Integration |
Drives I Audio About]

Wine s..

hitkps e, winehg. org

This prograrm is free software; wou can
redistribute it and/or modify it under the
terms of the GMU Lesser General Public
License as published by the Free Software
Foundation; either wersion 2.1 of the
License, or {ak wour opkion) any later version,

Windows regiskration information

CUATET I

Organization: I

O I Cancel Gppli

The final tab contains information on the WINE project, including a link to the website. It also
allows entry of (entirely optional) user information, although this is not sent anywhere as it is in
other operating systems.

11.6. WINE Management GUIs

While the base install of WINE comes with a GUI configuration tool in winecfg, it is main purpose is
just that: strictly configuring an existing WINE prefix. There are, however, more advanced
applications that will assist in the initial installation of applications as well as optimizing their
WINE environments. The below sections include a selection of the most popular.

11.6.1. Winetricks

The winetricks tool is a cross-platform, general purpose helper program for WINE. It is not
developed by the WINE project proper, but rather maintained on Github by a group of contributors.
It contains some automated "recipes" for getting common applications to work on WINE, both by
optimizing the settings as well as acquiring some DLL libraries automatically.

11.6.1.1. Installing winetricks

To install winetricks on a FreeBSD using binary packages, use the following commands (note
winetricks requires either the i386-wine or i386-wine-devel package, and is therefore not installed
automatically with other dependencies):

260

https://github.com/Winetricks/winetricks

pkg install i386-wine winetricks

To compile it from source, issue the following in the terminal:

cd /usr/ports/emulators/i386-wine
make install
cd /usr/ports/emulators/winetricks
make install

If a manual installation is required, refer to the Github account for instructions.

11.6.1.2. Using winetricks

Run winetricks with the following command:

% winetricks

Note: this should be in a 32-bit prefix to run winetricks. Launching winetricks displays a window
with a number of choices, as follows:

= Winetricks - choose a wineprefix - 0 x |

What do you want to do?

view help
© install an application
Install a benchmark
Install a game
Select the default wineprefix
Create new wineprefix |

Enable silent install

Cancel OK |

Selecting either Install an application, Install a benchmark, or Install a game shows a list with
supported options, such as the one below for applications:

261

https://github.com/Winetricks/winetricks

Winetricks - current prefix is "/home/aaron/.wine-new32"
which packagels) would you like to install?

Package Title Publisher Year Media Stat
3m_library 3M Cloud Library 3M Company 2015 download

Tzip 7-Zip 19.00 Igor Pavlow 2019 download
abiweord Abiword 2.8.6 AbiSource 2010 download
adobe_diged Adobe Digital Editions 1.7 Adobe 2011 download
adobe_digedd Adobe Digital Editions 4.5 Adobe 2015 download
autohotkey AutoHotKey autchotkey.org 2010 download
busybeox BusyBox FRP-2121 Ron Yorston / Busybox authors 2015 download

cmake CMake 2.8 Kitware 2013 download
colorprofile Standard RGE color profile Microsoft 2005 download
controlpad MS ActiveX Control Pad Microsoft 1997 download
controlspy Control Spy 6 Microsoft 2005 download
emuBoBe emuBiBG emuBi86.com 2015 download

evi Lego Mindstorms EV3 Home Edition Lego 2014 download

firefox Frefox 51.0 Maozilla 2017 download
fontxplorer Font Xplorer 1.2.2 Moon Software 2001 download
foabar2000 foobar2000 v1.4 Peter Pawlowski 2018 manual_download
| . (S ¥ LI TP [TY e ey Sy Bl aeamnmbs BT Tl il al

Cancel OK

Selecting one or more items and clicking OK will start their installation process(es). Initially, some
messages that appear to be errors may show up, but they’re actually informational alerts as
winetricks configures the WINE environment to get around known issues for the application:

Using an older
version of

Kindle
(1.16.44025) to
work around
https://
bugs.winehg.org/
show_bug.cgi?
id=43508

OK

Once these are circumvented, the actual installer for the application will be run:

262

() KindleForPC-installer-1.16.44025.exe

Running...

Cancel

Once the installation completes, the new Windows application should be available from the
desktop environment’s standard menu (shown in the screenshot below for the LXQT desktop
environment):

Programs) W Notepad++

In order to remove the application, run winetricks again, and select Run an uninstaller.

263

Winetricks - current prefix is "/home/aaron/.local/share/wineprefixes/winetricks”

What would you like to do to this wineprefix?

Install a Windows DLL or component
Install a font
Change settings
Run winecfg
Run regedit
Run taskmgr
Run explorer
© Run uninstaller
Run a commandline shell (for debugging)
Browse files
Delete ALL DATA AND APPLICATIONS INSIDE THIS WINEPREFIX

Cancel [k oK

A Windows®-style dialog will appear with a list of installed programs and components. Select the
application to be removed, then click the Modify/Remove button.

264

- Add/Remove Programs S
Applications |

To install a new program from a floppy disk, CD-ROM drive, or your hard drive,
click Install.

Install. ..

The following software can be automatically removed. To remove a program or to
modify its installed components, select it from the list and click Modify/Remove.,

Publisher Yersion

-r'-JEltEpad++ (32 1 Notepad++ Team Fod
&= Wine Gecko (32-bit) The Wine Project 2.47.1
= Wine Mono Runtime The Wine Project 5.0.0
= Wine Mono Windows Support The Wine Project 5.0.0
Support Information Madify.. . | Modify/Remove QJ

oK I Cancel | Lpply

This will run the applications built-in installer, which should also have the option to uninstall.

265

Notepad++ v7.7.1 Uninstall

Uninstall Notepad++ ¥7.7.1
Remove Notepad++ v7.7.1 from your computer,

Notepad++ v7.7.1 will be uninstalled from the Following fFolder. Click Uninstall to start the
uninstallation,

Uninstalling from: | C:\Program Files\Notepad++),

The best things in life are free. Notepad++ is free, So Notepad++ is the best

Uninstall Cancel

11.6.2. Homura

Homura is an application similar to winetricks, although it was inspired by the Lutris gaming
system for Linux. But while it is focused on games, there are also non-gaming applications available
for install through Homura.

11.6.2.1. Installing Homura

To install Homura’s binary package, issue the following command:

pkg install homura

Homura is available in the FreeBSD Ports system. However, than the emulators section of Ports or
binary packages, look for it in the games section.

cd /usr/ports/games/homura
make install

11.6.2.2. Using Homura

Homura’s usage is quite similar to that of winetricks. When using it for the first time, launch it from

266

https://lutris.net/

the command line (or a desktop environment runner applet) with:

% Homura

This should result in a friendly welcome message. Click OK to continue.

Homura 5.1 - Welcome

Welcome to Homura. If you have a problem,
| suggestion, questions or similar, do not
- hesitate to open an issue on GitLab. Have Fun!

OK

The program will also offer to place a link in the application menu of compatible environments:

Do you want a shortcut of Homura in your

/v application menu?
N

No Yes

Depending on the setup of the FreeBSD machine, Homura may display a message urging the install
of native graphics drivers.

v Homura 5.1 - 0 x

Homura have detected that you are using the fallback drivers,
please check your gpu driver installation. If you should run
Homura in a virtual machine or you have enabled software
rendering then you can ignore this message.

OK

The application’s window should then appear, which amounts to a "main menu" with all its options.
Many of the items are the same as winetricks, although Homura offers some additional, helpful

267

options such as opening its data folder (Open Homura Folder) or running a specified program (Run
a executable in prefix).

. Homura 5.1 - Installation - 0 x

What do you want to install?

Application

SamrmEay arrarer e

Arc
Bethesda-Launcher
Blizzard
Clone-Hero
Custom-Prefix
Diablo-1I-With-LoD
Discord
Drakensang-Online
GOG-Galaxy

Growtopia

Leaque-of-Legends
Origin

PokeMMO
Pokemon-Uranium
RuneScape

Steam

Subwav-Surfers

Cancel oK

To select one of Homura’s supported applications to install, select Installation, and click OK. This
will display a list of applications Homura can install automatically. Select one, and click OK to start
the process.

268

@ Zenit tificati
= [.enl ly n;:: | E:a ion [x]
Jownioading Discora

L "

Do Default Action

As a first step Homura will download the selected program. A notification may appear in supported
desktop environments.

- Wine - 0 X

The Wine configuration in jusrfhome/
"? aaron/.local{share/Homura/Programs)/Discord
is being updated, please wait. ..

=

The program will also create a new prefix for the application. A standard WINE dialog with this
message will display.

& Zenity notification
- X

Do Default Action

Next, Homura will install any prerequisites for the selected program. This may involve
downloading and extracting a fair number of files, the details of which will show in dialogs.

r

Extracting files -

Preparing: Y:\5ec51ef50468c891e2835a6f94479c\netfx_Core.mzz

Downloaded packages are automatically opened and run as required.

269

Unnamed Window

.NET Framework 4.6.2 Setup
Please wait while the .MET Framework is being installed.

File security verification:

All files were verified successfully,

Installation progress:

Installing .NET Framework 4.6.2

| Cancel ’

The installation may end with a simple desktop notification or message in the terminal, depending
on how Homura was launched. But in either case Homura should return to the main screen. To
confirm the installation was successful, select Launcher, and click OK.

270

’ Homura 5.1

What do you want to do?

Installation

O Launcher
Uninstallation
Winetricks
Run a executable in prefix
Update
Applying a fix
Open Homura folder
Enable logging
Other
About
Exit

Cancel

OK

This will display a list of installed applications.

271

. Homura 5.1 - Launcher - B x

What do you want to launch?
f&_;*_@:i;- ation

Discord

Cancel oK

To run the new program, select it from the list, and click OK. To uninstall the application, select
Uninstallation from the main screen, which will display a similar list. Select the program to be
removed, and click OK.

272

Homura 5.1 - Uninstallation

What do you want to uninstall?

Application

Cancel Oﬁ

11.6.3. Running Multiple Management GUIs

it is worth noting that the above solutions are not mutually exclusive. it is perfectly acceptable,
even advantageous, to have both installed at the same time, as they support a different set of
programs.

However, it is wise to ensure that they do not access any of the same WINE prefixes. Each of these
solutions applies workarounds and makes changes to the registries based on known workarounds
to existing WINE issues in order to make a given application run smoothly. Allowing both
winetricks and Homura to access the same prefix could lead to some of these being overwritten,
with the result being some or all applications do not work as expected.

273

11.7. WINE in Multi-User FreeBSD Installations

11.7.1. Issues with Using a Common WINE Prefix

Like most UNIX®-like operating systems, FreeBSD is designed for multiple users to be logged in and
working at the same time. On the other hand, Windows® is multi-user in the sense that there can
be multiple user accounts set up on one system. But the expectation is that only one will be using
the physical machine (a desktop or laptop PC) at any given moment.

More recent consumer versions of Windows® have taken some steps to improve the OS in multi-
user scenarios. But it is still largely structured around a single-user experience. Furthermore, the
measures the WINE project has taken to create a compatible environment means, unlike FreeBSD
applications (including WINE itself), it will resemble this single-user environment.

So it follows that each user will have to maintain their own set of configurations, which is
potentially good. Yet it is advantageous to install applications, particularly large ones like office
suites or games, only once. Two examples of reasons to do this are maintenance (software updates
need only be applied once) and efficiency in storage (no duplicated files).

There are two strategies to minimize the impact of multiple WINE users in the system.

11.7.2. Installing Applications to a Common Drive

As shown in the section on WINE Configuration, WINE provides the ability to attach additional
drives to a given prefix. In this way, applications can be installed to a common location, while each
user will still have an prefix where individual settings may be kept (depending on the program).
This is a good setup if there are relatively few applications to be shared between users, and they are
programs that require few custom tweaks changes to the prefix in order to function.

The steps to make install applications in this way are as follows:

1. First, set up a shared location on the system where the files will be stored, such as
/mnt/windows-drive_d/. Creating new directories is described in the mkdir(1) manual page.

2. Next, set permissions for this new directory to allow only desired users to access it. One
approach to this is to create a new group such as "windows," add the desired users to that group
(see the sub-section on groups in the Users and Basic Account Management section), and set to
the permissions on the directory to 770 (the section on Permissions illustrates this process).

3. Finally, add the location as a drive to the user’s prefix using the winecfg as described in the
above section on WINE Configuration in this chapter.

Once complete, applications can be installed to this location, and subsequently run using the
assigned drive letter (or the standard UNIX®-style directory path). However, as noted above, only
one user should be running these applications (which may be accessing files within their
installation directory) at the same time. Some applications may also exhibit unexpected behavior
when run by a user who is not the owner, despite being a member of the group that should have
full "read/write/execute" permissions for the entire directory.

274

https://www.freebsd.org/cgi/man.cgi?query=mkdir&sektion=1&format=html
../basics/index.html#users-groups
../basics/index.html#permissions

11.7.3. Using a Common Installation of WINE

If, on the other hand, there are many applications to be shared, or they require specific tuning in
order to work correctly, a different approach may be required. In this method, a completely
separate user is created specifically for the purposes of storing the WINE prefix and all its installed
applications. Individual users are then granted permission to run programs as this user using the
sudo(8) command. The result is that these users can launch a WINE application as they normally
would, only it will act as though launched by the newly-created user, and therefore use the
centrally-maintained prefix containing both settings and programs. To accomplish this, take the
following steps:

Create a new user with the following command (as root), which will step through the required
details:

adduser

Enter the username (e.g., windows) and Full name ("Microsoft Windows"). Then accept the defaults
for the remainder of the questions. Next, install the sudo utility using binary packages with the
following:

pkg install sudo

Once installed, edit /etc/sudoers as follows:

275

https://www.freebsd.org/cgi/man.cgi?query=sudo&sektion=8&format=html

User alias specification

define which users can run the wine/windows programs
User_Alias WINDOWS_USERS = user1,user2

define which users can administrate (become root)
User_Alias ADMIN = user]

Cmnd alias specification

define which commands the WINDOWS_USERS may run
Cmnd_Alias WINDOWS = /usr/bin/wine,/usr/bin/winecfg

Defaults

Defaults:WINDOWS USERS env_reset
Defaults:WINDOWS_USERS env_keep += DISPLAY
Defaults:WINDOWS_USERS env_keep += XAUTHORITY
Defaults Ilecture, tty_tickets, !fqdn

User privilege specification
root ALL=(ALL) ALL

Members of the admin user_alias, defined above, may gain root privileges
ADMIN ALL=(ALL) ALL

The WINDOWS_USERS may run WINDOWS programs as user windows without a password
WINDOWS_USERS ALL = (windows) NOPASSWD: WINDOWS

The result of these changes is the users named in the User_Alias section are permitted to run the
programs listed in the Cmnd Alias section using the resources listed in the Defaults section (the
current display) as if they were the user listed in the final line of the file. In other words, users
designates as WINDOWS_USERS can run the WINE and winecfg applications as user windows. As a
bonus, the configuration here means they will not be required to enter the password for the
windows user.

Next provide access to the display back to the windows user, as whom the WINE programs will be
running:

%

% xhost +local:windows

This should be added to the list of commands run either at login or when the default graphical
environment starts. Once all the above are complete, a user configured as one of the WINDOW_USERS in
sudoers can run programs using the shared prefix with the following command:

% sudo -u windows wine program.exe

it is worth noting that multiple users accessing this shared environment at the same time is still

276

risky. However, consider also that the shared environment can itself contain multiple prefixes. In
this way an administrator can create a tested and verified set of programs, each with its own prefix.
At the same time, one user can play a game while another works with office programs without the
need for redundant software installations.

11.8. WINE on FreeBSD FAQ

The following section describes some frequently asked questions, tips/tricks, or common issues in
running WINE on FreeBSD, along with their respective answers.

11.8.1. Basic Installation and Usage

11.8.1.1. How to Install 32-bit and 64-bit WINE on the Same System?

As described earlier in this section, the wine and i386-wine packages conflict with one another, and
therefore cannot be installed on the same system in the normal way. However, multiple installs can
be achieved using mechanisms like chroots/jails, or by building WINE from source (note this does
not mean building the port).

11.8.1.2. Can DOS Programs Be Run on WINE?

They can, as "Console User Interface" applications as mentioned earlier in this section. However,
there is an arguably better method for running DOS software: emulators/doshox. On the other
hand, there is little reason not to at least try it. Simply create a new prefix, install the software, and
if it does not work delete the prefix.

11.8.1.3. Should the emulators/wine-devel Package/Port be Installed to Use the Development
Version of WINE Instead of Stable?

Yes, installing this version will install the "development" version of WINE. As with the 32- and 64-bit
versions, they cannot be installed together with the stable versions unless additional measures are
taken.

Note that WINE also has a "Staging" version, which contains the most recent updates. This was at
one time available as a FreeBSD port; however, it has since been removed. It can be compiled
directly from source however.

11.8.2. Install Optimization

11.8.2.1. How Should Windows® Hardware (e.g., Graphics) Drivers be Handled?

Operating system drivers transfer commands between applications and hardware. WINE emulates
a Windows® environment, including the drivers, which in turn use FreeBSD’s native drivers for
this transfer. it is not advisable to install Windows® drivers, as the WINE system is designed to use
the host systems drivers. If, for example, a graphics card that benefits from dedicated drivers,
install them using the standard FreeBSD methods, not Windows® installers.

277

https://cgit.freebsd.org/ports/tree/emulators/dosbox/pkg-descr
https://cgit.freebsd.org/ports/tree/emulators/wine-devel/pkg-descr

11.8.2.2. Is There a way to Make Windows® Fonts Look Better?

A user on the FreeBSD forums suggests this configuration to fix out-of-the-box look of WINE fonts,
which can be slightly pixelated.

According to a post in the FreeBSD Forums, adding the following to .config/fontconfig/fonts.conf
will add anti-aliasing and make text more readable.

<?xml version="1.0"7>
<IDOCTYPE fontconfig SYSTEM "fonts.dtd>"

<fontconfig>

<!-- antialias all fonts -->

<match target="font">
<edit name="antialias" mode="assign"><bool>true</bool></edit>>
<edit name="hinting" mode="assign"><bool>true</bool></edit>>
<edit name="hintstyle" mode="assign"><const>hintslight</const></edit>>
<edit name="rgba" mode="assign"><const>rgb</const></edit>>

</match>

</fontconfig>

11.8.2.3. Does Having Windows® Installed Elsewhere on a System Help WINE Operate?

It may, depending on the application being run. As mentioned in the section describing winecfg,
some built-in WINE DLLs and other libraries can be overridden by providing a path to an alternate
version. Provided the Windows® partition or drive is mounted to the FreeBSD system and
accessible to the user, configuring some of these overrides will use native Windows® libraries and
may decrease the chance of unexpected behavior.

11.8.3. Application-Specific

11.8.3.1. Where is the Best Place to see if Application X Works on WINE?

The first step in determining compatibility should be the WINE AppDB. This is a compilation of
reports of programs working (or not) on all supported platforms, although (as previously
mentioned), solutions for one platform are often applicable to others.

11.8.3.2. Is There Anything That Will Help Games Run Better?

Perhaps. Many Windows® games rely on DirectX, a proprietary Microsoft graphics layer. However
there are projects in the open source community attempting to implement support for this
technology.

The dxvk project, which is an attempt to implement DirectX using the FreeBSD-compatible Vulkan
graphics sub-system, is one such. Although its primary target is WINE on Linux, some FreeBSD
users report compiling and using dxvk.

In addition, work is under way on a wine-proton port. This will bring the work of Valve, developer

278

https://forums.freebsd.org/threads/make-wine-ui-fonts-look-good.68273/
https://appdb.winehq.org/
https://forums.freebsd.org/threads/what-about-gaming-on-freebsd.723/page-9
https://forums.freebsd.org/threads/what-about-gaming-on-freebsd.723/page-9
https://www.freshports.org/emulators/wine-proton/

of the Steam gaming platform, to FreeBSD. Proton is a distribution of WINE designed to allow many
Windows® games to run on other operating systems with minimal setup.

11.8.3.3. Is There Anywhere FreeBSD WINE Users Gather to Exchange Tips and Tricks?

There are plenty of places FreeBSD users discuss issues related to WINE that can be searched for
solutions:

» The FreeBSD forums, particularly the Installation and Maintenance of Ports or Packages or
Emulation and virtualization forumes.
* FreeBSD IRC channels including #freebsd (for general support), #freebsd-games, and others.

* The BSD World Discord server’s channels including bsd-desktop, bsd-gaming, bsd-wine, and
others.

11.8.4. Other OS Resources

There are a number of resources focused on other operating systems that may be useful for
FreeBSD users:

* The WINE Wiki has a wealth of information on using WINE, much of which is applicable across
many of WINE’s supported operating systems.

» Similarly, the documentation available from other OS projects can also be of good value. The
WINE page on the Arch Linux Wiki is a particularly good example, although some of the "Third-
party applications” (i.e., "companion applications") are obviously not available on FreeBSD.

* Finally, Codeweavers (a developer of a commercial version of WINE) is an active upstream
contributor. Oftentimes answers to questions in their support forum can be of aid in
troubleshooting problems with the open source version of WINE.

279

https://forums.freebsd.org/
https://wiki.freebsd.org/IRC/Channels
https://discord.gg/2CCuhCt
https://wiki.winehq.org/
https://wiki.archlinux.org/index.php/wine
https://wiki.archlinux.org/index.php/wine
https://www.codeweavers.com/support/forums

Part III: System Administration

The remaining chapters cover all aspects of FreeBSD system administration. Each chapter starts by
describing what will be learned as a result of reading the chapter, and also details what the reader
is expected to know before tackling the material.

These chapters are designed to be read as the information is needed. They do not need to be read in
any particular order, nor must all of them be read before beginning to use FreeBSD.

280

Chapter 12. Configuration and Tuning

12.1. Synopsis

One of the important aspects of FreeBSD is proper system configuration. This chapter explains
much of the FreeBSD configuration process, including some of the parameters which can be set to
tune a FreeBSD system.

After reading this chapter, you will know:

* The basics of rc.conf configuration and /usr/local/etc/rc.d startup scripts.
* How to configure and test a network card.

* How to configure virtual hosts on network devices.

* How to use the various configuration files in /etc.

* How to tune FreeBSD using sysctl(8) variables.

* How to tune disk performance and modify kernel limitations.
Before reading this chapter, you should:

e Understand UNIX® and FreeBSD basics (FreeBSD Basics).

* Be familiar with the basics of kernel configuration and compilation (Configuring the FreeBSD
Kernel).

12.2. Starting Services

Many users install third party software on FreeBSD from the Ports Collection and require the
installed services to be started upon system initialization. Services, such as mail/postfix or
www/apache22 are just two of the many software packages which may be started during system
initialization. This section explains the procedures available for starting third party software.

In FreeBSD, most included services, such as cron(8), are started through the system startup scripts.

12.2.1. Extended Application Configuration

Now that FreeBSD includes rc.d, configuration of application startup is easier and provides more
features. Using the key words discussed in Managing Services in FreeBSD, applications can be set to
start after certain other services and extra flags can be passed through /etc/rc.conf in place of hard
coded flags in the startup script. A basic script may look similar to the following:

281

https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8&format=html
../basics/index.html#basics
../kernelconfig/index.html#kernelconfig
../kernelconfig/index.html#kernelconfig
https://cgit.freebsd.org/ports/tree/mail/postfix/pkg-descr
https://cgit.freebsd.org/ports/tree/www/apache22/pkg-descr
https://www.freebsd.org/cgi/man.cgi?query=cron&sektion=8&format=html

#1/bin/sh

#

PROVIDE: utility
REQUIRE: DAEMON

KEYWORD: shutdown

. /etc/rec.subr

name=utility
rcvar=utility_enable

command="/usr/local/sbin/utility"
load_rc_config $name

i

DO NOT CHANGE THESE DEFAULT VALUES HERE

SET THEM IN THE /etc/rc.conf FILE

¥

utility_enable=${utility_enable-"NO"}
pidfile=§{utility_pidfile-"/var/run/utility.pid"}

run_rc_command "$1"

This script will ensure that the provided utility will be started after the DAEMON pseudo-service. It
also provides a method for setting and tracking the process ID (PID).

This application could then have the following line placed in /etc/rc.conf:
utility_enable="YES"

This method allows for easier manipulation of command line arguments, inclusion of the default
functions provided in /etc/rc.subr, compatibility with rcorder(8), and provides for easier
configuration via rc.conf.

12.2.2. Using Services to Start Services

Other services can be started using inetd(8). Working with inetd(8) and its configuration is
described in depth in “The inetd Super-Server”.

In some cases, it may make more sense to use cron(8) to start system services. This approach has a
number of advantages as cron(8) runs these processes as the owner of the crontab(5). This allows
regular users to start and maintain their own applications.

The @reboot feature of cron(8), may be used in place of the time specification. This causes the job to
run when cron(8) is started, normally during system initialization.

282

https://www.freebsd.org/cgi/man.cgi?query=rcorder&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=inetd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=inetd&sektion=8&format=html
../network-servers/index.html#network-inetd
https://www.freebsd.org/cgi/man.cgi?query=cron&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=cron&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=crontab&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=cron&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=cron&sektion=8&format=html

12.3. Configuring cron(8)

One of the most useful utilities in FreeBSD is cron. This utility runs in the background and regularly
checks /etc/crontab for tasks to execute and searches /var/cron/tabs for custom crontab files. These
files are used to schedule tasks which cron runs at the specified times. Each entry in a crontab
defines a task to run and is known as a cron job.

Two different types of configuration files are used: the system crontab, which should not be
modified, and user crontabs, which can be created and edited as needed. The format used by these
files is documented in crontab(5). The format of the system crontab, /etc/crontab includes a who
column which does not exist in user crontabs. In the system crontab, cron runs the command as the
user specified in this column. In a user crontab, all commands run as the user who created the
crontab.

User crontabs allow individual users to schedule their own tasks. The root user can also have a user
crontab which can be used to schedule tasks that do not exist in the system crontab.

Here is a sample entry from the system crontab, /etc/crontab:

/etc/crontab - root's crontab for FreeBSD

i

#t $FreeBSD$

O]

SHELL=/bin/sh

PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin @

it

#minute hour mday month wday who command ®
i

/15T A 1) 0) /usr/libexec/atrun @

@ Lines that begin with the # character are comments. A comment can be placed in the file as a
reminder of what and why a desired action is performed. Comments cannot be on the same line
as a command or else they will be interpreted as part of the command; they must be on a new
line. Blank lines are ignored.

@ The equals (=) character is used to define any environment settings. In this example, it is used to
define the SHELL and PATH. If the SHELL is omitted, cron will use the default Bourne shell. If the
PATH is omitted, the full path must be given to the command or script to run.

® This line defines the seven fields used in a system crontab: minute, hour, mday, month, wday, who, and
command. The minute field is the time in minutes when the specified command will be run, the
hour is the hour when the specified command will be run, the mday is the day of the month, month
is the month, and wday is the day of the week. These fields must be numeric values, representing
the twenty-four hour clock, or a *, representing all values for that field. The who field only exists
in the system crontab and specifies which user the command should be run as. The last field is
the command to be executed.

@ This entry defines the values for this cron job. The */5, followed by several more * characters,
specifies that /usr/libexec/atrun is invoked by root every five minutes of every hour, of every
day and day of the week, of every month.Commands can include any number of switches.

283

https://www.freebsd.org/cgi/man.cgi?query=cron&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=crontab&sektion=5&format=html

However, commands which extend to multiple lines need to be broken with the backslash "\"
continuation character.

12.3.1. Creating a User Crontab

To create a user crontab, invoke crontab in editor mode:
% crontab -e

This will open the user’s crontab using the default text editor. The first time a user runs this
command, it will open an empty file. Once a user creates a crontab, this command will open that
file for editing.

It is useful to add these lines to the top of the crontab file in order to set the environment variables
and to remember the meanings of the fields in the crontab:

SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin

Order of crontab fields

minute hour mday month wday command

Then add a line for each command or script to run, specifying the time to run the command. This
example runs the specified custom Bourne shell script every day at two in the afternoon. Since the
path to the script is not specified in PATH, the full path to the script is given:

0 14 * * * Jusr/home/dru/bin/mycustomscript.sh

Before using a custom script, make sure it is executable and test it with the limited
set of environment variables set by cron. To replicate the environment that would
be used to run the above cron entry, use:

(r') env -i SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
- HOME=/home/dru LOGNAME=dru /usr/home/dru/bin/mycustomscript.sh

The environment set by cron is discussed in crontab(5). Checking that scripts
operate correctly in a cron environment is especially important if they include any
commands that delete files using wildcards.

When finished editing the crontab, save the file. It will automatically be installed and cron will read

the crontab and run its cron jobs at their specified times. To list the cron jobs in a crontab, use this
command:

% crontab -1
@ 14 * * * Jusr/home/dru/bin/mycustomscript.sh

284

https://www.freebsd.org/cgi/man.cgi?query=crontab&sektion=5&format=html

To remove all of the cron jobs in a user crontab:

% crontab -r
remove crontab for dru? y

12.4. Managing Services in FreeBSD

FreeBSD uses the rc(8) system of startup scripts during system initialization and for managing
services. The scripts listed in /etc/rc.d provide basic services which can be controlled with the start,
stop, and restart options to service(8). For instance, sshd(8) can be restarted with the following
command:

service sshd restart

This procedure can be used to start services on a running system. Services will be started
automatically at boot time as specified in rc.conf(5). For example, to enable natd(8) at system
startup, add the following line to /etc/rc.conf:

natd_enable="YES"

If a natd_enable="NO" line is already present, change the NO to YES. The rc(8) scripts will
automatically load any dependent services during the next boot, as described below.

Since the rc(8) system is primarily intended to start and stop services at system startup and
shutdown time, the start, stop and restart options will only perform their action if the appropriate
/etc/rc.conf variable is set. For instance, sshd restart will only work if sshd_enable is set to YES in
[etc/rc.conf. To start, stop or restart a service regardless of the settings in /etc/rc.conf, these
commands should be prefixed with "one". For instance, to restart sshd(8) regardless of the current
[etc/rc.conf setting, execute the following command:

service sshd onerestart

To check if a service is enabled in /etc/rc.conf, run the appropriate rc(8) script with rcvar. This
example checks to see if sshd(8) is enabled in /etc/rc.conf:

service sshd rcvar
sshd

#

sshd_enable="YES"

(default: "")

o The # sshd line is output from the above command, not a root console.

285

https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=service&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=sshd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc.conf&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=natd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=sshd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=sshd&sektion=8&format=html

To determine whether or not a service is running, use status. For instance, to verify that sshd(8) is
running:

service sshd status
sshd is running as pid 433.

In some cases, it is also possible to reload a service. This attempts to send a signal to an individual
service, forcing the service to reload its configuration files. In most cases, this means sending the
service a SIGHUP signal. Support for this feature is not included for every service.

The rc(8) system is used for network services and it also contributes to most of the system
initialization. For instance, when the /etc/rc.d/bgfsck script is executed, it prints out the following
message:

Starting background file system checks in 60 seconds.

This script is used for background file system checks, which occur only during system initialization.

Many system services depend on other services to function properly. For example, yp(8) and other
RPC-based services may fail to start until after the rpchind(8) service has started. To resolve this
issue, information about dependencies and other meta-data is included in the comments at the top
of each startup script. The rcorder(8) program is used to parse these comments during system
initialization to determine the order in which system services should be invoked to satisfy the
dependencies.

The following key word must be included in all startup scripts as it is required by rc.subr(8) to
"enable" the startup script:

 PROVIDE: Specifies the services this file provides.

The following key words may be included at the top of each startup script. They are not strictly
necessary, but are useful as hints to rcorder(8):

» REQUIRE: Lists services which are required for this service. The script containing this key word
will run after the specified services.
» BEFORE: Lists services which depend on this service. The script containing this key word will run

before the specified services.

By carefully setting these keywords for each startup script, an administrator has a fine-grained
level of control of the startup order of the scripts, without the need for "runlevels" used by some
UNIX® operating systems.

Additional information can be found in rc(8) and rc.subr(8). Refer to this article for instructions on
how to create custom rc(8) scripts.

286

https://www.freebsd.org/cgi/man.cgi?query=sshd&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=yp&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rpcbind&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rcorder&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc.subr&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rcorder&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc.subr&sektion=8&format=html
https://docs.freebsd.org/en/articles/rc-scripting/
https://www.freebsd.org/cgi/man.cgi?query=rc&sektion=8&format=html

12.4.1. Managing System-Specific Configuration

The principal location for system configuration information is /etc/rc.conf. This file contains a wide
range of configuration information and it is read at system startup to configure the system. It
provides the configuration information for the rc* files.

The entries in /etc/rc.conf override the default settings in /etc/defaults/rc.conf. The file containing
the default settings should not be edited. Instead, all system-specific changes should be made to
/etc/rc.conf.

A number of strategies may be applied in clustered applications to separate site-wide configuration
from system-specific configuration in order to reduce administration overhead. The recommended
approach is to place system-specific configuration into /etc/rc.conf.local. For example, these entries
in /etc/rc.conf apply to all systems:

sshd_enable="YES"
keyrate="fast"
defaultrouter="10.1.1.254"

Whereas these entries in /etc/rc.conf.local apply to this system only:

hostname="node1.example.org"
ifconfig_fxp0="inet 10.1.1.1/8"

Distribute /etc/rc.conf to every system using an application such as rsync or puppet, while
/etc/rc.conflocal remains unique.

Upgrading the system will not overwrite /etc/rc.conf, so system configuration information will not
be lost.

Both /etc/rc.conf and /etc/rc.conflocal are parsed by sh(1). This allows system
(r) operators to create complex configuration scenarios. Refer to rc.conf(5) for further
et information on this topic.

12.5. Setting Up Network Interface Cards

Adding and configuring a network interface card (NIC) is a common task for any FreeBSD
administrator.

12.5.1. Locating the Correct Driver

First, determine the model of the NIC and the chip it uses. FreeBSD supports a wide variety of NICs.
Check the Hardware Compatibility List for the FreeBSD release to see if the NIC is supported.

If the NIC is supported, determine the name of the FreeBSD driver for the NIC. Refer to
[usr/src/sys/conf/NOTES and /usr/src/sys/arch/conf/NOTES for the list of NIC drivers with some
information about the supported chipsets. When in doubt, read the manual page of the driver as it

287

https://www.freebsd.org/cgi/man.cgi?query=sh&sektion=1&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc.conf&sektion=5&format=html

will provide more information about the supported hardware and any known limitations of the
driver.

The drivers for common NICs are already present in the GENERIC kernel, meaning the NIC should
be probed during boot. The system’s boot messages can be viewed by typing more
/var/run/dmesg.boot and using the spacebar to scroll through the text. In this example, two Ethernet
NICs using the dc(4) driver are present on the system:

dc@: <82c169 PNIC 10/100BaseTX> port @xad@@-0xadff mem @xd3800000-0xd38
000ff irq 15 at device 11.0 on pci@

miibus@: <MII bus> on dc@

bmtphy@: <BCM5201 10/100baseTX PHY> PHY 1 on miibus@

bmtphy@: 10baseT, 10baseT-FDX, 10@baseTX, 100baseTX-FDX, auto

dc@: Ethernet address: 00:a0:cc:da:da:da

dc@: [ITHREAD]

dc1: <82c169 PNIC 10/100BaseTX> port 0x9800-0x98ff mem 0xd3000000-0xd30
000ff irq 11 at device 12.0 on pci@

miibus1: <MII bus> on dc1

bmtphy1: <BCM5201 10/10@baseTX PHY> PHY 1 on miibus1

bmtphy1: 10baseT, 10baseT-FDX, 10@baseTX, 100baseTX-FDX, auto

dc1: Ethernet address: 00:a30:cc:da:da:db

de1: [ITHREAD]

If the driver for the NIC is not present in GENERIC, but a driver is available, the driver will need to
be loaded before the NIC can be configured and used. This may be accomplished in one of two
ways:

» The easiest way is to load a kernel module for the NIC using kldload(8). To also automatically
load the driver at boot time, add the appropriate line to /boot/loader.conf. Not all NIC drivers
are available as modules.

 Alternatively, statically compile support for the NIC into a custom Kkernel. Refer to
[usr/src/sys/conf/NOTES, /usr/src/sys/arch/conf/NOTES and the manual page of the driver to
determine which line to add to the custom kernel configuration file. For more information
about recompiling the kernel, refer to Configuring the FreeBSD Kernel. If the NIC was detected
at boot, the kernel does not need to be recompiled.

12.5.1.1. Using Windows® NDIS Drivers

Unfortunately, there are still many vendors that do not provide schematics for their drivers to the
open source community because they regard such information as trade secrets. Consequently, the
developers of FreeBSD and other operating systems are left with two choices: develop the drivers
by a long and pain-staking process of reverse engineering or using the existing driver binaries
available for Microsoft® Windows® platforms.

FreeBSD provides "native" support for the Network Driver Interface Specification (NDIS). It
includes ndisgen(8) which can be used to convert a Windows® XP driver into a format that can be
used on FreeBSD. As the ndis(4) driver uses a Windows® XP binary, it only runs on i386™ and
amd64 systems. PCI, CardBus, PCMCIA, and USB devices are supported.

288

https://www.freebsd.org/cgi/man.cgi?query=dc&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=kldload&sektion=8&format=html
../kernelconfig/index.html#kernelconfig
https://www.freebsd.org/cgi/man.cgi?query=ndisgen&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ndis&sektion=4&format=html

To use ndisgen(8), three things are needed:

1. FreeBSD kernel sources.
2. A Windows® XP driver binary with a .SYS extension.

3. AWindows® XP driver configuration file with a .INF extension.

Download the .SYS and .INF files for the specific NIC. Generally, these can be found on the driver CD
or at the vendor’s website. The following examples use W32DRIVER.SYS and W32DRIVER.INF.

The driver bit width must match the version of FreeBSD. For FreeBSD/i386, use a Windows® 32-bit
driver. For FreeBSD/amd64, a Windows® 64-bit driver is needed.

The next step is to compile the driver binary into a loadable kernel module. As root, use ndisgen(8):

ndisgen /path/to/W32DRIVER.INF /path/to/W32DRIVER.SYS

This command is interactive and prompts for any extra information it requires. A new Kkernel
module will be generated in the current directory. Use kldload(8) to load the new module:

kldload ./W32DRIVER_SYS.ko

In addition to the generated kernel module, the ndis.ko and if_ndis.ko modules must be loaded. This
should happen automatically when any module that depends on ndis(4) is loaded. If not, load them
manually, using the following commands:

kldload ndis
kldload if_ndis

The first command loads the ndis(4) miniport driver wrapper and the second loads the generated
NIC driver.

Check dmesg(8) to see if there were any load errors. If all went well, the output should be similar to
the following:

ndis@: <Wireless-G PCI Adapter> mem 0xf4100000-0xf4101fff irq 3 at device 8.0 on pcil
ndis@: NDIS API version: 5.0

ndis@: Ethernet address: @a:b1:2c:d3:4e:f5

ndis@: 11b rates: 1Mbps 2Mbps 5.5Mbps 11Mbps

ndis@: 11g rates: 6Mbps 9Mbps 12Mbps 18Mbps 36Mbps 48Mbps 54Mbps

From here, ndisO can be configured like any other NIC.

To configure the system to load the ndis(4) modules at boot time, copy the generated module,
W32DRIVER_SYS.ko, to /boot/modules. Then, add the following line to /boot/loader.conf:

289

https://www.freebsd.org/cgi/man.cgi?query=ndisgen&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ndisgen&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=kldload&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ndis&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=ndis&sektion=4&format=html
https://www.freebsd.org/cgi/man.cgi?query=dmesg&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ndis&sektion=4&format=html

W32DRIVER_SYS_load="YES"

12.5.2. Configuring the Network Card

Once the right driver is loaded for the NIC, the card needs to be configured. It may have been
configured at installation time by bsdinstall(8).

To display the NIC configuration, enter the following command:

% ifconfig
dc@: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric @ mtu 1500
options=80008<VLAN_MTU, LINKSTATE>
ether 00:a0:cc:da:da:da
inet 192.168.1.3 netmask Oxffffff0@ broadcast 192.168.1.255
media: Ethernet autoselect (10@baseTX <full-duplex>)
status: active
dc1: flags=8802<UP,BROADCAST,RUNNING, SIMPLEX,MULTICAST> metric @ mtu 1500
options=80008<VLAN_MTU, LINKSTATE>
ether 00:a0:cc:da:da:db
inet 10.0.0.71 netmask Oxffffff@0 broadcast 10.0.0.255
media: Ethernet 10baseT/UTP
status: no carrier
100: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric @ mtu 16384
options=3<RXCSUM, TXCSUM>
inet6 fe80::1%100 prefixlen 64 scopeid 0x4
inet6 ::1 prefixlen 128
inet 127.0.0.1 netmask 0xff000000
nd6 options=3<PERFORMNUD,ACCEPT_RTADV>

In this example, the following devices were displayed:

» dcO: The first Ethernet interface.
e dcl: The second Ethernet interface.
* 100: The loopback device.

FreeBSD uses the driver name followed by the order in which the card is detected at boot to name
the NIC. For example, sis2 is the third NIC on the system using the sis(4) driver.

In this example, dc0 is up and running. The key indicators are:

UP means that the card is configured and ready.

The card has an Internet (inet) address, 192.168.1.3.

It has a valid subnet mask (netmask), where 0xffffff00 is the same as 255.255.255.0.
It has a valid broadcast address, 192.168.1.255.

S

The MAC address of the card (ether) is 00:a0:cc:da:da:da.

290

https://www.freebsd.org/cgi/man.cgi?query=bsdinstall&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=sis&sektion=4&format=html

6. The physical media selection is on autoselection mode (media: Ethernet autoselect (100baseTX
<full-duplex>)). In this example, dcl is configured to run with 10baseT/UTP media. For more
information on available media types for a driver, refer to its manual page.

7. The status of the link (status) is active, indicating that the carrier signal is detected. For dc1, the

status: no carrier status is normal when an Ethernet cable is not plugged into the card.

If the ifconfig(8) output had shown something similar to:

dc@: flags=8843<BROADCAST,SIMPLEX,MULTICAST> metric @ mtu 1500
options=80008<VLAN_MTU, LINKSTATE>
ether 00:a0:cc:da:da:da
media: Ethernet autoselect (10@baseTX <full-duplex>)
status: active

it would indicate the card has not been configured.

The card must be configured as root. The NIC configuration can be performed from the command
line with ifconfig(8) but will not persist after a reboot unless the configuration is also added to
/etc/rc.conf. If a DHCP server is present on the LAN, just add this line:

ifconfig_dc@="DHCP"

Replace dc0 with the correct value for the system.

The line added, then, follow the instructions given in Testing and Troubleshooting.

o If the network was configured during installation, some entries for the NIC(s) may
be already present. Double check /etc/rc.conf before adding any lines.

If there is no DHCP server, the NIC(s) must be configured manually. Add a line for each NIC present
on the system, as seen in this example:

ifconfig_dc@="1inet 192.168.1.3 netmask 255.255.255.0"
ifconfig_dc1="inet 10.0.0.1 netmask 255.255.255.0 media 1@0baseT/UTP"

Replace dc0 and dcl and the IP address information with the correct values for the system. Refer to
the man page for the driver, ifconfig(8), and rc.conf(5) for more details about the allowed options
and the syntax of /etc/rc.conf.

If the network is not using DNS, edit /etc/hosts to add the names and IP addresses of the hosts on the
LAN, if they are not already there. For more information, refer to hosts(5) and to
/usr/share/examples/etc/hosts.

291

https://www.freebsd.org/cgi/man.cgi?query=ifconfig&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ifconfig&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=ifconfig&sektion=8&format=html
https://www.freebsd.org/cgi/man.cgi?query=rc.conf&sektion=5&format=html
https://www.freebsd.org/cgi/man.cgi?query=hosts&sektion=5&format=html

If there is no DHCP server and access to the Internet is needed, manually configure
the default gateway and the nameserver:

sysrc defaultrouter="your_default_router"
echo 'nameserver your_DNS_server' >> /etc/resolv.conf

12.5.3. Testing and Troubleshooting

Once the necessary changes t